Commentary Archive

What are the full-featured desktop NAS units about?

Article

Synology DiskStation DS415play NAS with media transcoding - Press image courtesy of Synology

Synology DiskStation DS415play – an example of these full-function network-attached-storage units

Synology DSM vs. QNAP QTS: Which NAS is right for you? | Windows Central

My Comments

Increasingly Synology and QNAP have become strong rivals when it comes to full-function network-attached-storage devices that do more than what WD, Seagate and others offer. Here, they are made by two NAS specialists who are running high-end NAS-focused operating systems that can be run headless or with a screen and keyboard “head”. Some manufacturers like NETGEAR and ASUSStor are following on with Synology’s and QNAP’s efforts to join in the pack when it comes to

QNAP TS-251 2-bay NAS

QNAP TS-251 2-bay NAS – another example of what a full-function NAS is about

offering full-function NAS units for home and small-business use.

Recent iterations of these devices typically have the same kind of computing power as a relatively-recent low-end regular personal computer but put this power towards file handling and serving. Most of them will support at least a two-disk RAID setup in the low-tier varieties with the mainstream models having four or five disk bays for a RAID 5 setup. The “brain” in these devices will be mostly an ARM-based CPU but higher-spec variants may use an Intel or AMD processor expected in a very low-end laptop computer. You may also find some NAS units like the Synology “play” NAS units running a graphics processor as a co-processor for media transcoding. A significant number of models will even support upgradeable RAM to allow them to work more quickly and handle more data traffic.

But the operating system is of a similar standard to one that would drive a regular personal computer. Most likely it would be a variant of a desktop Linux distribution and would be regularly updated as well as allowing users to install apps from the NAS vendor’s app store. Once you log in through a Web-based user interface or a keyboard / screen / mouse “console” attached to the NAS, you would experience a user interface similar to Windows, MacOS or desktop Linux running a graphical user interface.  But most of these user interfaces can’t allow for cut-and-paste between the host computer and the NAS user interface.

The apps will typically convey particular file-handling functions like syncing to online storage platforms, BitTorrent server functionality and DLNA-compliant media-server functionality. There is also apps that “tie” the NAS to native mobile-platform client apps supplied by the vendor to allow transfer of data between the NAS and a mobile-platform tablet or smartphone. It is typically a way to push a NAS as a “personal cloud” by working with a vendor-hosted “DNS-mapping” arrangement to allow you to upload content from your iPhone to your NAS even while you are out and about and connected to the Internet. This is in addition to various “client-backup” server tools for regular-computer platforms along with NAS-NAS backup tools.

Let’s not forget software like media-player functionality or IP-camera videosurveillance recording functionality. In some cases, there are various server apps for email or WordPress content management so you could easily purpose these units as a business information server. In some cases, adding peripherals to these NAS devices opens up paths for extra functionality with, for example, TV-tuner modules converting these NAS units in to Tivo-style PVRs that can share live or recorded TV content over the network.

QNAP’s QTS and Synology are very similar in many ways but Synology is focused towards simplified operation while QTS is focused towards taking advantage of faster better hardware. There are other similar full-featured NAS platforms like Netgear’s ReadyNAS or the ASUSStor NAS platform existing but there doesn’t seem to be the same kind of third-party developer base built up around these platforms.

But what can be done to make the full-featured NAS market better? One approach could be to allow the licensing of one or more of these NAS operating systems and app platforms to other companies on a “white-label” basis so they can launch their own full-featured NAS product range. This can avoid the need for a company who wants to develop their own NAS product to “reinvent the wheel” when building software.  As well, the creation of one or more large platform bases for NAS operating systems can give software developers the confidence to create software for these devices. Therefore it can avoid the home and small-business NAS market becoming like the games-console market which is focused towards vendor-specific solutions with a limited path for delivering additional software.

Personally, I would recommend the full-function NAS units of the Synology or QNAP ilk as being suitable for those of us who want more out of a network-storage device. In some cases, I would see it as appealing for an upgrade path for people who see their NAS device do more than just host files from your computer and share them to your Smart TV. Similarly it would appeal to those of us who want the basic abilities like DLNA media serving to be done in a more capable manner.

Send to Kindle

What could be done to simplify your router upgrade

Telstra Gateway Frontier modem router press picture courtesy of Telstra

There needs to be a standard filetype to simplify the process of upgrading your home network router without reconfiguring your home network

An issue that will crop up through the life of a home network is to upgrade the router. This will be brought on with replacement of carrier-supplied equipment with retail equipment, replacing that half-dead router that you are always powering off and on many times a week, or upgrading to higher-performance equipment.

But you will end up having to transcribe out configuration data from your old equipment so you can enter it in to your new equipment especially if you want to avoid having to reconfigure other network equipment on your same home network.

Most routers offer a way for users to back up the current configuration details. This is typically to allow a user to do things like perform a factory resent or to test a configuration without losing a prior known-to-work state.

The process typically requires the user to download a configuration file to the computer they are configuring the router from in a similar manner to downloading a resource from the Web. But there isn’t a consistent file schema for storing this data in a manner for transferring to devices supplied by different vendors. In some cases, you may not be able to transfer the configuration data to newer equipment from the same vendor such as to install a newer router model.

AVM have taken steps in the right direction by allowing users to save a configuration from an older Fritz!Box router and upload it to a newer Fritz!Box router running a newer version of the Fritz!OS firmware. It is also to factor in allowing the router to persist your configuration to a newer version of the firmware.

But what can be done to make this work better would be to use a standard file format, preferably an XML-based schema which could be used for storing a router configuration. This would have to be agreed upon by all of the vendors to provide true vendor interoperability.

There would also be issues about providing multiple methods of storing this data. It could be about maintaining the traditional HTTP download / upload approach with Web clients on the same local network. Or it could also be about transferring the data between a USB Mass Storage device and the router such as to facilitate an out-of-box install.

Such a setup could allow for a range of scenarios like simplifying the upgrade path or to make it easier for support staff to keep information about different configurations they are responsible for.

The configuration data would have to cater for WAN (Internet) and LAN details including details regarding Wi-Fi wireless network segments, advanced network setups like VLAN and VPN setups, VoIP endpoint setups as well as general and security-related data.

Of course an issue that will crop up would be assuring the user of proper network security and sovereignty, something that could be assured through not persisting the management password to a new router. Also you won’t be able to keep Wi-Fi channel data especially if you deal with self-optimising equipment, because you may have to face an evolving Wi-Fi spectrum landscape.

What will need to happen is to provide methods to allow seamless upgrading of devices that serve as your network-Internet “edge” so you can simplify this upgrade process and get the most out of the new equipment.

Send to Kindle

Across-the-room data transfer–many questions need to be answered

Transfer data between two smartphones

Wirelessly transferring data between two devices in the same space

The industry has explored various methods for achieving point-to-point across-the-room data transfer and user discovery. This would avoid the need to use the Internet or a mobile phone network to share a file or invite another user to a game or social network. Similarly, it would be a way to exchange data with a device like a printer or an interactive advertising setup in order to benefit from what that device offered.

Methods that have been tried

The first of these was IrDA infra-red transfer working in a similar to how most TV remote controls work to allow you to change channels without getting off the couch. This was exploited by the legendary Palm Pilot PDA and some of the Nokia mobile phones as a way to “beam” one’s contact details to a friend or colleague with the same device.

Bluetooth pushed forward with the Object Push Profile and File Transfer Profile as methods for exchanging data across the room. This was typically useful for contact details, low-resolution photos or Weblinks and was exploited with the popular feature phones offered by the major phone manufacturers through the 2000s. This method was also exploited by the out-of-home advertising industry as a way to convey Weblinks or contact details from a suitably-equipped poster to suitably-equipped mobile phones set to be discoverable.

But Apple nipped this concept in the bud when they brought out the highly-popular iPhone. The concept has been kept alive for the regular-computer operating systems and for Android mobile applications but mobile users who want to exchange data would have to ask whether the recipient had an Android phone or not.

Bluetooth also implemented that concept with the 4.0 Low Energy Profile standard by using “beacons” as a location tool. But this would be dependent on application-specific software being written for the client devices.

Microsoft is even reinstigating the Bluetooth method to transfer files between two computers in the same room as part of the functionality introduced in the Windows 10 April Update. But I am not sure if this will be a truly cross-platform solution for Bluetooth as was achieved with the earlier Object Push Profile or File Transfer Profile protocols.

Apple tried out a method similar to Bluetooth Object Push Profile called AirDrop but this implemented Wi-Fi-based technology and could only work with the Apple ecosystem. It was associated with “cyberflashing” where lewd pictures were forced out to unsuspecting recipients and Apple implemented a “contacts only” function with contacts’ emails verified against their Apple ID email logins as a countermeasure against this activity.

QR Code used on a poster

QR codes like what’s used on this poster being used as a pointer to an online resource

The QR code which is a special machine-readable 2D barcode has the ability to convey contact details, Weblinks, Wi-Fi network parameters and other similar data to mobile phones. These can be printed on hard-copy media or shown on a screen and have a strong appeal with business / visiting cards, out-of-home advertising or even as a means for authenticating client devices with WhatsApp.

Facebook even tried implementing QR codes as a way to share a link to one’s Profile or Page on that social network. Here, it can be a secure method rather than hunting via email or phone number which was raised as a concern with the recent Facebook / Cambridge Analytica data-security saga,

The Android and Windows communities looked towards NFC “touch-and-go” technology where you touch your phones together or touch an NFC card or tag to transfer data. This has been exploited as a technique to instigate Bluetooth device pairing and implemented as a method of sharing contact data between Android and / or Windows devices. For a file transfer such as with contact details, the data itself is transferred using Bluetooth in the case of Android Beam or Wi-Fi Direct in the case of Samsung’s S Beam feature.

The Wi-Fi Alliance are even wanting to put up a Wi-Fi-based method called Wi-Fi Aware. Here, this would be used for data transfer and other things associated with the old Bluetooth Object Posh Profile.

This is implemented on a short-range device-to-device basis because users in the same room may not be connected to the same Wi-Fi Direct or Wi-Fi infrastructure network as each other. There is also the reality that a properly-configured Wi-Fi public-access network wouldn’t permit users to discover other users through that network and the fact that a typical Wi-Fi network can cover the whole of a building or a street.

But there could be the ability to enable data transfer and user discovery using Wi-Fi Aware but being able to use a Wi-Fi infrastructure network but allow the user to define particular restrictions. For example, it could be about limiting the scope of discovery to a particular access point because most of these access points may just cover a particular room. Using the access points as a “scoping” tool even if the host devices don’t connect to that network could make the concept work without jeopardising the Wi-Fi infrastructure network’s data security.

Applications

There are a series of key applications that justify the concept of “across-the-room” data transfer. Typically they either involve the transfer of a file between devices or to even transfer a session-specific reference string that augments local or online activity.

The common application here is for a user to share their own or a friend’s contact details with someone else as a vCard contact-detail file. Another common application is to share a link to a Web-hosted resource as a URL. But some users also use across-the-room data transfer to share photos and video material such as family snapshots. In the same context, it could be about a dedicated-pudevice sending or receiving a file to or from a regular computer or mobile device such as to transfer .

In the advertising and public-relations context, “across-the-room” data transfer has been seen as a way to transfer a URL for a marketer’s Website or a visual asset to an end-user’s phone or computer. For example, the QR code printed on a poster has become the way to link a user to a media-rich landing page with further explanation about what is advertised. Similarly some out-of-home advertising campaigns implemented the Bluetooth Object Push Profile standard as a way to push an image, video or Weblink to end-users’ mobile phones.

But “across-the-room” data transfer is also being used as a way for users in the same space to discover each other on a social network or to identify potential opponents in a local or online multiplayer game. I find this as a preferred method for discovering someone to add to a social network or similar platform I am a member of so that I can be sure that I am finding the right person on that platform and they are sure about it. Also, in the case of a local multiplayer game, the players would have to continue exchanging data relating to their moves using the local data link for the duration of their game.

Facebook even explored the idea of using QR codes as a way to allow one to invite another person whom they are chatting with to be their Facebook Friend or discover their Facebook Page. It is infact an approach they are going to have to rediscover because they are closing off the users’ ability to search for people on the social network by phone number or email thanks to the Cambridge Analytica scandal.

What does the typical scenario involve?

The users who are in the same area are talking with each other about something that one of them has to offer such as contact details or a photo. Or, in the context of advertising or other similar situations, there will be some prior knowledge that there is something to benefit from knowing more about the offer using an online experience.

One of the users will invoke the transfer process by, for example, sharing the resource or hunting for a potential game opponent using their device’s user interface. The other use will share a nickname or other identifier to look out for in the list that the initial user is presented.

Then the other user will confirm and complete the process, including verifying success of that transfer and agreeing that the contents are what they were expecting. In the case of adding another user to a social network or multiplayer game, they will let the instigating user know that they have been added to that network or game.

What does a successful across-the-room data transfer or user-discovery ecosystem need?

Firstly, it needs to be cross-platform in that each device that is part of a data transfer or user/device discovery effort can discover each other and transfer data without needing to be on the same platform or operating system.

Secondly, the process of instigating or receiving a data transfer needs to be simple enough to allow reliable data transfer. Yet end-users’ data privacy should not be compromised – users shouldn’t need to receive unwanted content.

The protection against unwanted discovery or data transfer should be assured through the use of time-limited or intent-based discovery along with the ability for users to whitelist friends whom they want to receive data from or be discovered by in the wireless-based context. Intent-based discovery could be to have the recipient device become undiscoverable once the recipient device confirms that they have received the sender’s data or, in the case of a local multiplayer game, the players have completed or resigned from the game.

Conclusion

The concept of “across-the-room” data transfer and user/device discovery needs to be maintained as a viable part of mobile computing whether for work or pleasure. Where operated properly, this would continue to assure users of their privacy and data sovereignty.

Send to Kindle

Laptops and mobile devices could implement system-wide battery-saving techniques

Dell Inspiron 13 7000 2-in-1 Intel 8th Generation CPU at QT Melbourne hotel

There needs to be software-wide support for determining when a laptop like the Dell Inspiron 13 7000 2-in-1 is on battery power or not so it runs in a manner to conserve battery power

I had read a Lifehacker article about how one could disable real-time malware scanning on a laptop while it is running on battery power as a way to “spin out” the battery runtime further. This was because if the desktop-security program is performing real-time scanning, it would be using a processor thread and demanding more power to do that job.

It is in addition to Microsoft researching ways to minimise screen refreshing while a portable computer is running on batteries so as to conserve battery power. Here, it was about avoiding the need for the CPU and graphics infrastructure to devote lots of energy to “painting” the whole screen when there is a small amount of animation taking place.

Here, I am advocating a “dual-power” approach for software development to allow software to operate in two different modes – a high-performance mode and a power-economy mode. The operating system would sense if the computer is running on external power or battery power and convey this power status to the software applications accordingly. This is in addition to optimising the display, Wi-Fi or other functionality depending on their power source.

USB-C connector on Samsung Galaxy S8 Plus smartphone

It also applies to smartphones like this Samsung Galaxy S8 Plus so they can take advantage of time they are connected to a charger

It is similar to how some portable electronics made through the 70s to the 90s operated depending on the power source. For example some portable radios and boomboxes along with some personal audio players would have the dial or display illuminated while they were connected to external power but you could activate this lighting at the press of a button if the unit was running on batteries. Or some devices would charge rechargeable batteries installed therein while they were connected to external power.

Also there is a reality that most of us will plug our laptops, tablets or smartphones in to a charger while we are at home, in the office or in the car even while we have a full battery in our devices. This is typically to “spin out” the battery runtime and make sure the battery’s “topped off”. In this situation, if we use our devices while they are plugged in to the external power source, we could see a situation where they work in a higher-performance mode.

For example, a game could activate extra “between-move” animations only while the laptop, tablet or smartphone is connected to external power. Or a program which does a lot of calculations like a photo-editing program could work in a “high-performance” mode while on external power. Similarly an email client or similar program could work in a “manual refresh” mode on battery power or an endpoint security program could enable real-time scanning and similar functionality only while on external power.

Candy Crush Saga gameplay screen Android

Games like Candy Crush Saga could work in a manner to provide the best experience depending on if the mobile device is connected to external power or not

What needs to happen is for the desktop or mobile operating system to convey the device power-mode status to all of the apps as part of an “application-programming-interface” hook and for the apps to take advantage of that hook to adapt their behaviour.  The functionality could be enabled or disabled for each application through a configuration option in the application’s settings window.

A security issue that can easily be raised is enablement of unwanted cryptomining and other processes while the mobile device is on external power as a way to facilitate stealthy operation of these processes. This is to make it appear to the user that the unwanted processes don’t exist because there isn’t the excessive battery drain taking place with these processes.

In the privacy context, determining whether a device is running on external power could be used to assume whether the device is at a fixed location or not because AC mains power is the common power source associated with these locations. This is although external power supplies can be used in a mobile context such as being connected to a vehicle’s, boat’s or aircraft’s power infrastructure and used while underway for example.

What is being highlighted here is for the feasibility for operating systems in portable computing devices to convey a system-wide power-mode status relating to use of external power. This is to allow application software to work in a manner to conserve the host computer’s battery power.

Send to Kindle

What is happening with driver-free printing

What is driver-free printing?

HP OfficeJet 6700 Premium business inkjet multifunction printer

Driver-free printing like AirPrint allows for use of printers like this HP OfficeJet without the need to install drivers or extra software on host computers

This is to be able to use a printer with a host computing device without the need to install drivers or additional software on that device.

The current situation with most operating systems is that since the rise of page-based printers, you had to install additional driver software to get all the software on your computer to work with your printer.

This involves one having to know what make and model the printer was and how it was connected to the host device. Then one would be  downloading the software from the printer manufacturer’s Website or the computer platform’s app store and installing it on that computer or loading it from media supplied with the printer by the manufacturer.

Of course, how your printer connects to your computer or mobile device, be it through a USB cable, a Bluetooth link or a network is about the physical link to that printer. Most of the standards associated with these connection methods don’t provide support for driver-free printing.

Why is there an imperative for driver-free printing?

Mobile computing

You could print from a mobile-platform tablet like this Lenovo to a range of printers without installing lots of extra apps. Infact you can use Mopria to print from this Lenovo Android tablet driver-free.

A key imperative behind driver-free printing is the concept of mobile computing. It is about using highly-portable computing devices like laptops, smartphones and tablets for personal computing no matter wherever you are. This may include being able to use someone else’s printer or a public printing facility to get that document or photo printed there and then.

Similarly it can be about paying a service provider to perform advanced printing tasks such as bulk printing and document finishing for a small business or community organisation, or a photo lab to turn out a special photo as a large high-quality print on glossy paper.

Dedicated Computing Devices

Furthermore, it can be about the idea of providing a computing device, especially a dedicated computing device with printing abilities. A key application would be interactive TV supported by a smart-TV or set-top-box platform. In this scenario, a viewer could do something like print out a recipe from a cooking show that they view on demand just by using the remote control.

Accessible Computing

In the case of accessible computing, some blind users are using PDA devices which use tactile data input similar to a Perkins Braille typewriter and voice or Braille tactile output. Here, these users want to yield information in hard-copy form for sighted users but these devices have the same software requirements as a dedicated computing device. Typically they would have to work according to common standards for driver-free printing.

Similar devices are being constructed to allow people to live a life independent of particular disabilities and these will benefit from driver-free hard-copy output.

Efforts that have taken place to achieve this goal

In the early days of personal computing, Epson used their ESC/P codes as a defacto standard for determining how dot-matrix impact printers format the characters they print if anything beyond ordinary ASCII text was required. This was effectively used by every manufacturer who offered dot-matrix and similar printers whether through licensing or emulation.

A similar situation took place with Adobe with PostScript and HP with PCL as common page-description languages for laser and inkjet page printers. Again, other manufacturers took this on with licensing or emulation of the various language-interpreter software for their products.

These standards fell away as GUI-based operating systems managed printing at the operating-system level rather than at the application level. This was underscored with some printer manufacturers working with Microsoft to push forward with GDI-based host-rasterised printing leading towards cost-effective printer designs.

There have been some initial efforts taking place for driver-free printing in particular application classes, especially where dedicated-function devices were involved. This was through the persistence of ESC/P and the ESC/POS derivative printer-control protocol within the point-of-sale receipt printer space, along with the use of PictBridge as a driver-free method for printing photos from consumer digital cameras.

Similarly some managed-business-printing and service-based-printing platforms implemented a “single-driver” approach for printing using these platforms. This was to achieve a goal towards one installable program needed to become part of the platform and print to any machine the user is authorised to print to regardless of make and model. But it didn’t really answer the need for true driver-free operation for a printing environment.

As the home network became more common and was seen as part of the home-entertainment technology sphere, the UPnP Forum and DLNA made attempts at driver-free printing as part of their standards. It was positioned as a way to allow, for example, Smart TVs, electronic picture frames and set-top boxes to yield hard-copy output of photos for example. HP were the only vendor whose mid-tier and premium consumer printers answered these standards as I have discovered while reviewing some of their products.

The Printer Working Group started working on IPP Everywhere as a way to achieve driver-free printing via the network or direct connections for both consumer and business applications. This even was about exposing printer capabilities and features without the need of adding in special software to do something like stapling or supporting PIN-driven secure job release.

One of the standard page-description languages specified for IPP Everywhere was the Adobe PDF format which is infact used for “download-to-print” situations. This is because it is seen as a file format that represents “electronic hard copy” and the common practice in the “download-to-print” use case is to prepare a document as a PDF file before making it available. The IPP Everywhere approach also included and defined a use case of “printing by reference” where the printer “fetches” the PDF document off the Web server for printing rather than the user downloading it in order to turn out a hard copy of it.

Apple iPad Pro 9.7 inch press picture courtesy of Apple

Most iPhones and iPads implement AirPrint to allow for driver-free mobile printing

Apple was the first to make a serious breakthrough for driver-free printing and the IPP Everywhere goal when they added AirPrint to the version 4.2 of the iOS platform. This was important for iOS due to the desire not to add any extra machine-specific code for particular printers since the iPad, iPhone and iPod Touch were mobile devices with constrained memory and storage space.

Google initially achieved something similar with their Google Cloud Print ecosystem which was being pitched for ChromeOS and Android. But this worked as a cloud-driven or hosted variation of print management solutions pitched at enterprises which offered a form of driverless or universal-driver printing to that user base.

But the Mopria Alliance have made a serious step closer with driverless printing by creating a network-based printing infrastructure for the Android platform. Google followed up the Cloud Print program with the Android Print Service software ecosystem which uses “plugins” that work in a same way to drivers. Here, the Mopria Alliance, founded by Canon, HP, Samsung and Xerox, worked towards a single plugin for driver-free printing and had these companies install firmware in their machines to present themselves across a logical network to Mopria-compliant hosts as well as process print jobs for these hosts.

What needs to happen

All printers that work with any network need to support AirPrint, IPP Everywhere and Mopria no matter what position they hold in a manufacturer’s product lineup. This will then incentivise the idea of driver-free network printing.

The IT industry also needs to investigate the use of device classes / profiles within the USB and Bluetooth standards to facilitate driver-free direct printing. This is because USB and Bluetooth are seen as connection types used for directly connecting a peripheral to a host computer device rather than connecting via a network. As well, driver-free direct printing could open up more use cases involving printing from dedicated-function devices.

Similarly, Microsoft needs to implement Mopria and/or IPP Everywhere in to Windows as part of a default print driver delivered with the desktop operating system. This would then allow for truly-portable printing from laptops, tablets and 2-in-1s running the Windows operating system.

Driver-free printing could come in to its own with interactive TV especially when you are dealing with cooking shows like MasterChef

A use case that needs to be put forward for driver-free printing is its relevance with interactive TV. In this case, it could be about watching a TV show whether linearly or on-demand, including watching content held on Blu-Ray discs and being able to, at a whim, print out resources relating to that show. Situations that can come up include printing a “white paper” associated with a public-affairs show or printing a recipe that was demonstrated in a cooking show. Even advertising could lead towards the ability for users to print out coupons in response to advertised specials, something that would be valued in the USA or complete a booking for an advertised event with the printer turning out the tickets. Such a concept can also extend to other “lean-back” apps offered on a smart-TV platform by providing a printing option to these apps.

But this would be about achieving a user experience that is about selecting the resource to print and instantiating the print job from a 10-foot “lean-back” user experience using a limited remote control. It would also include advertising the fact that printable resources exists for that show that you can print using the interactive-TV platform. Similarly, interactive-TV platforms like HBBTV, media-storage platforms like Blu-Ray, and smart-TV / set-top-box platforms like tvOS, Android TV or Samsung Smart Hub would need to support one or more of the driver-free printing platforms. In the case of tvOS, Apple could simply add AirPrint functionality to that set-top operating system so you could print from your Appl

The idea of driver-free printing will also be relevant to the smart home especially if it is desirable for devices therein to be able to provide hard copy on demand. For example, kitchen appliances that have access to online recipe libraries, an idea positioned by most of the big names in this field, may benefit from this feature because you could configure them to be set up for a particular recipe while your printer turns out the actual recipe with the ingredients list. But this concept will need to be driven by the use of “print by reference” standards for access to online resources.

As well, a driver-free printing setup should be able to recognise label and receipt printers in order to permit transaction-driven printing using these devices. For example, address labels could be turned out as a sheet of paper with all the labels on a regular printer or as a run of labels emerging from a label printer.

How could this affect printer design and product differentiation

The use of driver-free printing won’t deter printer manufacturers from improving their products’ output speed and quality. Infact, the use of standard page-description languages will lead towards the development of high-speed coprocessors and software that can quickly render print jobs sent to them in these formats.

There will also be a competitive emphasis on the number of functions available at a multifunction printer’s control panel with this being driven by app platforms maintained by the various printer manufacturers. Like with smart TVs, it could lead towards third parties including alliances developing app platforms for manufacturers who don’t want to invest in developing and maintaining an app platform.

Let’s not forget that printer manufacturers will maintain the “horses for courses” approach when it comes to designing printer models for both home and business use. But it will lead to an emphasis on refining the various product classes without needing to think about shoehorning driver and print-monitor software for the various host devices.

Conclusion

Once we see driver-free printing, it can lead towards simplified real plug-and-play printer setup for all kinds of users. Similarly it opens up printers towards a large class of device types beyond mobile and desktop computing devices.

Send to Kindle

USB hubs and dedicated-function devices–issues that may be of concern

There are many of the USB hubs that allow multiple USB devices to be connected to the one USB port. As well, some devices like external hard disks and keyboards are being equipped with their own USB hubs.

Brother HL-L8350CDW colour laser printer USB walk-up socket

USB sockets on printers like this Brother colour laser won’t easily support USB hub operation even if they have a use case for that application

The use of a USB hub is also used as an approach for creating multiple-function USB peripheral devices. Similarly, a device with multiple USB sockets for connecting peripheral devices would have the socket collection seen as a “root hub” if one controller chipset looks after that socket collection. It can also appeal to dedicated-function devices like routers, NAS devices, home entertainment or automotive infotainment setups offered in the aftermarket context where the manufacturer sees these devices as the hub of a system of devices.

USB hubs are divided between the “bus-powered” types powered by the host device and the “self-powered” types that have their own power-supply. The latter type can be a USB device like a printer or external hard disk that has its own power supply or a “bus-powered” USB hub that has a DC input socket for a power supply so it can become a “self-powered” hub.

Belkin USB hub

A typical USB hub which may cause problems with concurrently running multiple devices from a dedicated-function device

The idea of implementing a USB hub with a dedicated-function device can have a strong appeal with a variety of device types and combinations. For example, a router would implement a USB port for connecting a USB Mass-Storage Device like an external hard disk so it can become its own file server but also see this port for use with a USB mobile-broadband modem as a failover Internet-connection option. Or a business-grade printer which supports PIN-protected “secure job release” may use a keypad compliant to USB Human-Interface-Device specifications connected to its USB port which facilitates “walk-up” printing from a USB memory key. Even a Smart TV or set-top box may use the one USB port for viewing files from one or more Mass-Storage devices and / or work with a Webcam and a software client to be a group videophone terminal.

Technics Grand Class G30 hi-fi system with media server press image courtesy of Panasonic

USB sockets on consumer-electronics equipment may not properly support USB hubs

To the same extent, this could be about a setup involving a multifunction peripheral device. An example of this would be a USB keyboard with an integrated pointing device like a trackpad, trackball or thumbstick being connected to a games console or set-top box, with this setup allowing for the pointing device serving to navigate the user interface while the keyboard answers text-entry needs.

A problem that can occur with using USB hubs or hub-equipped USB peripherals with dedicated-function devices like printers, NAS devices or consumer-AV equipment is that such devices may not handle USB hubs consistently. For example, a USB keyboard that has a hub function may not be properly detected by a set-top box or games console.

This can happen due to a power limit placed on the host’s USB port, which can affect many devices connected behind a bus-powered USB hub. Or a very common reality is that the firmware for most dedicated-function devices is written to expect a single USB device having only one function to be connected to the device’s USB port.

What needs to happen is for a dedicated-function device to identify and enumerate each and every USB peripheral device it can properly support that is connected to its USB port whether directly or via a hub. This would be based on how much power is comfortably available across the USB bus whether provided by the host or downstream self-powered USB hubs. It is in addition to the device classes that are supported by the host device to fulfil its functions.

I previously touched on this issue in relationship to USB storage devices that contain multiple logical volumes being handled by dedicated-function devices. This was to address a USB memory key or external hard disk partitioned to multiple logical volumes, a multiple-slot memory-card adaptor presenting each slot as its own drive letter or devices that have fixed storage and removeable storage. There, I was raising how a printer or a stereo system with USB recording and playback could handles these USB devices properly.

Then the device may need to communicate error conditions concerning these setups. One of these would be a insufficient-power condition where there isn’t enough power available to comfortably run all the devices connected to the USB port via the hub. This may be with situations like external hard disks connected to the host device via a bus-powered hub along with other peripherals or a self-powered hub that degrades to bus-powered operation due to its “wall-wart” AC adaptor falling out of the power outlet or burning out. Here, such a status may be indicated through a flashing light on a limited-interface device like a router or a USB “too many devices” or “not enough power” message on devices that have displays.

If the USB bus exists with the hub in place but none of the connected devices are supported by the host’s firmware, you could see an error message with “unsupported devices” or “charging only” appear on the device. Otherwise, all supported devices would then be identified and enumerated no matter where they exist in the USB chain.

In this kind of situation, there would be an emphasis on using class-driver software for the various USB Device Classes that are relevant to the device’s functionality although there are some situations like USB modems may call for device-specific software support.

What would be essential for the USB hub or multifunction device to work properly with a dedicated-function device is that the device’s firmware has to support the USB Hub device class, including providing proper and consistent error handling. To the same extent, AC-powered devices like printers or home-entertainment equipment would need to provide a power output at its USB ports equivalent to what is offered with a regular desktop computer’s USB ports.

Send to Kindle

How do I see the state of play with network-based multiroom audio?

Definitive Technologies W-Series multiroom soundbar – an example of one of these network multiroom speakers

Increasingly everyone in the consumer audio-visual industry are releasing multiroom audio platforms that work across a small network to share audio content through your house.

This typically is used as a way for these vendors to “bind” most of their network-capable audio-video products having them serve as an endpoint for music around the house. For some manufacturers, this functionality is seen as a way to differentiate their consumer-electronics product ranges.

Key functions offered by most network-based multiroom audio platforms

Each unit in a network-based multiroom audio platform can be one of many AV device classes. These cam be: a speaker system that plays out the audio content; an adaptor device that plays the audio content through another sound system that has its own amplification and speakers; or a network-capable amplifier that connects to a set of speakers.

The adaptor devices are often promoted as a way to bring an existing hi-fi in to the context of a multiroom audio setup, but you could use computer speakers or a 1980s-era boombox for the same effect. Similarly, network-capable amplifiers may be seen as a way to get existing speakers as part of a multiroom audio setup.

There are different variations on the theme with soundbars that are connected to a TV, or receivers and stereo systems that are capable of acting in their own right as a sound system but can be part of these multiroom setups, or subwoofers that connect to the home network but exist to add some “kick” to the sound played by other speakers in the setup.

These work on the premise of the speakers existing on the same logical network of a “home / small-business” network setup. That is where

  • the network is connected to one router that typically gives it access to Internet service,
  • Wi-Fi wireless segments are set up according to the WPA-Personal (shared passphrase) arrangement
  • members of a network are not isolated and can easily discover each other
  • and you are not using a Web-based login page to use the network.

This Def Tech device is an “on-ramp” digital media adaptor for a network-based multiroom audio setup

The speakers can be set up as members of a logical group that typically represents a room, with the ability to have multiple logical speaker groups on the same logical network. Under normal operation, all speakers of that group play the same audio stream synchronously. As well, the hardware and software works together to avoid jitter and other problems associated with moving synchronous time-dependent audio content across packet-based networks.

Some platforms allow the creation of a multichannel group where a speaker or speakers play a channel of a stereo or multichannel soundmix. Here, you could have one speaker play the left channel of a stereo soundmix while another speaker plays the right channel of that stereo mix. This has led to the creation of surround-sound setups with a soundbar or surround-capable stereo receiver playing the front channels of a surround soundmix while wireless speakers look after the surround channels and low-frequency effects of that mix.

Let’s not forget that some systems have the ability to use certain speakers to handle particular frequency ranges of the audio stream. The obvious case is to bring in a wireless subwoofer to provide that bit of extra bass punch to the music. But it could be to use full-range speaker systems with improved bass response to complement speakers that don’t have that kind of bass response. In this case, the full-range speaker may be allow frequency-level adjustability and you could set things up so that it puts more of its power behind the bass while the other speakers provide stronger localised treble response.

Yamaha R-N402 Natural Sound Network Stereo Receiver press picture courtesy of Yamaha Australia

Yamaha R-N402 Network Stereo Receiver – a MusicCast-based example of a stereo component that cam stream its own sources to a network multiroom system or play content from an online or multiroom source

You can adjust the sound levels for each output device individually or adjust them all as a group, The individual approach can appeal to “party-mode” arrangements where different speakers are in different rooms and is of benefit where you can adjust the sound level on the device itself; but the group approach comes in handy with multiple speakers in one room such as a multichannel setup.

All of these setups use a mobile-platform app supplied by the platform vendor as the control surface. But some of them allow some form of elementary control like programme selection or sound-level adjustment through controls on the device or its remote control. Let’s not forget that an increasing number of these platforms are being supported by interfaces for one or more voice-driven home assistants so you can tell Amazon Alexa to adjust the volume or play a particular source through the system.

Most of these platforms allow a device to have integrated programme sources or input connections for external equipment and stream what’s playing through these sources or inputs through one or more other speakers. The applications put forward include to play the TV sound from a connected TV in the living room through a speaker in the kitchen or to have the music on a CD playing on the stereo system’s CD player coming through a speaker in the bedroom.

A party context for this feature could include connecting an audio adaptor with a line-level input to the DJ’s mixer output in parallel with his PA amplifier and speakers serving the dance-floor area. Then you “extend” the party sound that the DJ creates in to the other rooms using other wireless speakers / audio adaptors based on that same platform with each output device working at a level appropriate to the area each speaker or adaptor-equipped sound system is used in. Here, the multiroom audio setup can make it easy to provide “right-sized” amplification for other areas at the venue.

Denon HEOS wireless speakers

The Denon HEOS multiroom speakers – a typical example of network-based multiroom devices

Increasingly, most of these platforms are being geared towards taking advantage of your home network to reproduce master-grade audio content recorded at the different speakers. Initially this was to cater towards file-based audio content sourced from online “download-to-own” music storefronts who cater to audiophiles but is catering towards high-quality streaming-music services. It also is a way to stream audio content from analogue sources such as your vinyl record collection across your home network without losing sound quality in the process.

The current limitations with these systems

The multiroom-audio platforms are created by the audio-equipment manufacturers or, in some cases, the companies who are behind the hardware chipsets used in these devices. Only one platform, namely DTS PlayFi, is created by a company who isn’t developing particular chipsets or equipment.

Here, this leads effectively to balkanisation of the network-based multiroom audio marketplace where you have to be sure all your equipment is part of one platform for it to work correctly. You may be able to work around this problem through connecting one unit from one platform to another unit belonging to another platform using a line-level, digital or Bluetooth connection, then juggling between two different mobile-platform apps to control the system.

What needs to happen?

As this product function evolves, there needs to be room to improve.

Firstly, there needs to be the ability for one to establish a network-based multiroom setup using devices based on different platforms. This would require creating and maintaining industry-wide standards and specifications under an umbrella “multiroom AV platform” that all the manufacturers can implement, in a similar way to HDMI-CEC equipment control via HDMI. The Wi-Fi Alliance have taken steps towards this by developing Wi-Fi TimeSync as a standards-based approach towards achieving audio synchronisation across Wi-Fi-based devices. Qualcomm is wanting to push the AllPlay

It would also be about identifying and creating multichannel audio setups that can work appropriately. In the case of a stereo setup, this would require the speakers to have the same output level and frequency response for a proper stereo pair. A surround setup would work with speakers that are part of a “pair” in the Front, Surround or Back (7.1 setups) having the same output level and frequency response. To the same extent, it could be about adding a subwoofer to speakers that can only handle the middle and higher frequencies.

Manufacturers also have to underscore whether these systems can work across any network segment types present in a home network including handling networks that are comprised of multiple segments. This can cater to wireless networks implementing either an Ethernet or HomePlug wired backbone, or one of the newer distributed-Wi-Fi networks. A few multiroom audio platforms have achieved this goal through the supply of equipment, typically stereo systems and adaptor devices, that uses Ethernet connectivity as well as Wi-Fi connectivity.

There is also the issue of allowing for network-based multiroom audio setups to have a high number of endpoint devices even on a typical home network. Here it is about how much can be handled across the typical network’s bandwidth especially if the network and devices implement up-to-date high-bandwidth technology.

This is important if one considers implementing one or more multichannel groups or use wireless subwoofers in every group for that bit of extra bass. It also is important where someone may want to run two or more logical groups at once with each logical group running the same or a different local or online content source.

Some manufacturers may determine device limits based on the number of logical groups that can be created. But I would still like to do away with placing an artificial ceiling on how large one can have their multiroom audio setup, with the only limit being the effective bandwidth available to the home network.

Conclusion

The network-based multiroom audio technology is showing some signs of maturity but a lot more effort needs to take place to assure a level playing field for consumers who want to implement such setups.

Send to Kindle

The trends affecting personal-computer graphics infrastructure

Article

AMD Ryzen CPUs with integrated Vega graphics are great for budget-friendly PC gaming | Windows Central

My Comments

Dell Inspiron 13 7000 2-in-1 Intel 8th Generation CPU at QT Melbourne hotel

Highly-portable computers of the same ilk as the Dell Inspiron 13 7000 2-in-1 will end up with highly-capable graphics infrastructure

A major change that will affect personal-computer graphics subsystems is that those subsystems that have a highly-capable graphics processor “wired-in” on the motherboard will be offering affordable graphics performance for games and multimedia.

One of the reasons is that graphics subsystems that are delivered as an expansion card are becoming very pricey, even ethereally expensive, thanks to the Bitcoin gold rush. This is because the GPUs (graphics processors) on the expansion cards are being used simply as dedicated computational processors that are for mining Bitcoin. This situation is placing higher-performance graphics out of the reach of most home and business computer users who want to benefit from this feature for work or play.

But the reality is that we will be asking our computers’ graphics infrastructure to realise images that have a resolution of 4K or more with high colour depths and dynamic range on at least one screen. There will even be the reality that everyone will be dabbling in games or advanced graphics work at some point in their computing lives and even expecting a highly-portable or highly-compact computer to perform this job.

Integrated graphics processors as powerful as economy discrete graphics infrastructure

One of the directions Intel is taking is to design their own integrated graphics processors that use the host computer’s main RAM memory but have these able to serve with the equivalent performance of a baseline dedicated graphics processor that uses its own memory. It is also taking advantage of the fact that most recent computers are being loaded with at least 4Gb system RAM, if not 8Gb or 16Gb. This is to support power economy when a laptop is powered by its own battery, but these processors can even support some casual gaming or graphics tasks.

Discrete graphics processors on the same chip die as the computer’s main processor

Intel Corporation is introducing the 8th Gen Intel Core processor with Radeon RX Vega M Graphics in January 2018. It is packed with features and performance crafted for gamers, content creators and fans of virtual and mixed reality. (Credit: Walden Kirsch/Intel Corporation)

This Intel CPU+GPU chipset will be the kind of graphics infrastructure for portable or compact enthusiast-grade or multimedia-grade computers

Another direction that Intel and AMD are taking is to integrate a discrete graphics subsystem on the same chip die (piece of silicon) as the CPU i.e. the computer’s central “brain” to provide “enthusiast-class” or “multimedia-class” graphics in a relatively compact form factor. It is also about not yielding extra heat nor about drawing on too much power. These features are making it appeal towards laptops, all-in-one computers and low-profile desktops such as the ultra-small “Next Unit of Computing” or consumer / small-business desktop computers, where it is desirable to have silent operation and highly-compact housings.

Both CPU vendors are implementing AMD’s Radeon Vega graphics technology on the same die as some of their CPU designs.

Interest in separate-chip discrete graphics infrastructure

Dell Inspiron 15 Gaming laptop

The Dell Inspiron 15 7000 Gaming laptop – the kind of computer that will maintain traditional soldered-on discrete graphics infrastructure

There is still an interest in discrete graphics infrastructure that uses its own silicon but soldered to the motherboard. NVIDIA and AMD, especially the former, are offering this kind of infrastructure as a high-performance option for gaming laptops and compact high-performance desktop systems; along with high-performance motherboards for own-build high-performance computer projects such as “gaming rigs”. The latter case would typify a situation where one would build the computer with one of these motherboards but install a newer better-performing graphics card at a later date.

Sonnet eGFX Breakaway Puck integrated-chipset external graphics module press picture courtesy of Sonnet Systems

Sonnet eGFX Breakaway Puck integrated-chipset external graphics module – the way to go for ultraportables

This same option is also being offered as part of the external graphics modules that are being facilitated thanks to the Thunderbolt 3 over USB-C interface. The appeal of these modules is that a highly-portable or highly-compact computer can benefit from better graphics at a later date thanks to one plugging in one of these modules. Portable-computer users can benefit from the idea of working with high-performance graphics where they use it most but keep the computer lightweight when on the road.

Graphics processor selection in the operating system

For those computers that implement multiple graphics processors, Microsoft making it easier to determine which graphics processor an application is to use with the view of allowing the user to select whether the application should work in a performance or power-economy mode. This feature is destined for the next major iteration of Windows 10.

Here, it avoids the issues associated with NVIDIA Optimus and similar multi-GPU-management technologies where this feature is managed with an awkward user interface. They are even making sure that a user who runs external graphics modules has that same level of control as one who is running a system with two graphics processors on the motherboard.

What I see now is an effort by the computer-hardware industry to make graphics infrastructure for highly-compact or highly-portable computers offer similar levels of performance to baseline or mid-tier graphics infrastructure available to traditional desktop computer setups.

Send to Kindle

Delivery-consignment storage to be part of the floorplan

House in Toorak

How is online delivery going to be handled securely when no-one’s at home?

Most of us who buy goods on the Internet are likely to run in to situations where they miss a parcel delivery due to, for example, no-one being at home. This includes situations with families that have teenagers that arrive home earlier than the parents and it is desirable that adults sign for packages that have been delivered.

This can also extend to situations where you need to have a courier collect goods from your place, something I have had to do every time I have finished with review-sample products where I return them to the distributor or PR agency. But it would also apply when you have to return unwanted merchandise to an online retailer or send faulty equipment to a workshop to be repaired, or simply to use a messenger service to run printed documents from your home office to a business partner. Here, you have to make sure someone you trust is at home looking after the consignment until the courier arrives to collect it.

Intercom panel with codepad

These systems may need to be modified to support secure unattended parcel delivery

There has been recent Internet discussion about the Amazon Key product which is a smart-lock ecosystem that allows Amazon couriers to drop off your orders inside your home after you confirm with them that they have your order. The constant issue that was raised was the fact that courier could wander around your home unsupervised after they drop off the order, thus being a threat to your privacy and home security.

But this may raise certain architectural requirements and possibilities to cater for the rise of online deliveries. These requirements and possibilities are about creating secure on-premises storage for these consignments that have been delivered or are to be collected by a courier while you are absent. It is also about making sure that the courier cannot enter your home unsupervised under the guise of dropping off or picking up a consignment.

They will affect how homes are designed whether as a new-build development or as a renovation effort and will affect how apartment blocks and similar developments are designed. It is very similar to the use of specially-installed lock-boxes to keep front-gate or meter-box keys that are only opened by the utility’s meter reader with a special master key when they read your utility-service meter.

Architectural requirements

One of these could be a cabinet or small storeroom located towards the front of your home and used primarily for storage of delivered goods. Of course, you may use these spaces to store items like clean-up tools or solid fuel. Some householders may see a garage or a shed also serve this same purpose.

An alternative would be to implement a small vestibule or porch enclosure with an inner front door and outer front door, Here, these spaces would be secured with a smart lock or access-control system that ties in with secure consignment-drop-off arrangements like what Amazon proposes.

In the case of a vestibule, the inner entry door that leads to the rest of the house would be secured under the control of the household and not be part of these arrangements. This also applies to arrangements where the vestibule opens to other rooms like a home office.

Apartment block in Elwood

Multi-dwelling units like apartment blocks may have to have luggage-locker storage facilities for unattended parcels

For multi-dwelling developments, this could be achieved through the use of a storage facility similar to a cluster of luggage lockers. Here, one or more lockers are shared amongst different apartments on an as-needed basis. In these buildings, they would be located close to or within the mail-room or as a separate storeroom. For those buildings that have multiple entry vestibules for different apartment clusters, it may be plausible to have a group of parcel-delivery lockers in each vestibule.

If your property has a front gate that is normally locked, you may have to use a smart lock or access-control system compliant with the abovementioned secure consignment drop-off arrangements on that gate.

Security requirements for these spaces

All these arrangements would be dependent on a smart lock or access-control system that ties in with the couriers’ or online-delivery platforms’ ecosystems and would be used when you aren’t at home. Such systems would be dependent on consignment numbers that are part of consignment notes or delivery dockets, along with the recipient being notified by the courier of the pending delivery.

But you would be able to have access to these spaces using your own code, card or access token held on your smartphone as expected for all smart-lock setups.

Integration with the courier’s workflow

Such setups would require the household to register them with an online-shopping platform or a courier / messenger platform operated by the incumbent post-office or an industry association. Here, the household would notify whereabouts the secure storage space is on their property

Product delivery

Typically, when you receive a delivery, the courier would ring the doorbell and find that no-one is at home. Or the door is answered by a child and the standing arrangement regarding the chain of custody for deliveries is for the parcel to be received and signed for by a responsible adult.

In this situation, the courier would have to enter details on their handheld terminal about no-one being home. You would then be contacted by email, text messaging or a similar platform regarding the pending delivery and then you use the platform’s companion mobile app or Website to authorise the drop-off of your consignment in the safe storage space.

Then the courier would receive a one-shot authority code which they use to unlock the storage space so they can lodge your parcel there. Once they have delivered the parcel, you would be notified that the parcel is waiting for collection. You would then use your keycode to open up that space to collect your goods when you arrive.

Product collection

There are also times where we require a courier to collect goods from us. This can be situations ranging from returned merchandise, through equipment being collected for repairs, to sending goods out as gifts. In these situations, a responsible adult may not be home to hand over the item and you don’t want to wait around at home or co-ordinate a pickup time for the consignment.

Here, you would organise the consignment paperwork with the courier or the recipient organisation if they are organising the pickup. As part of this, you would receive a consignment number as part of the consignment note, returned-merchandise authorisation or similar document.

Then you would place the goods in the storage space and make sure this is locked. Subsequently you would enter the consignment number in to the smart lock or platform app on your phone or computer. This consignment number works as a one-shot authority code for the courier to open the secure storage space.

When the courier arrives to collect the consignment, they would enter the consignment number in the smart lock to open the storage space in order to collect the goods. Once they have collected the goods, they then lock up the storage space before heading onwards with the consignment. You would then be notified that they have collected the consignment, with the ability to track that parcel as it is on its way.

Issues that need to be raised

Access to a competitive online-retail or parcel-delivery marketplace

It can be easy to bind an unattended-delivery secure-storage platform to an incumbent postal service (including a courier service owned by or a partner with one of these services), or a dominant online retailer like Amazon.

This ends up as a way for the incumbent postal service or dominant online retailer to effectively “own” the online-retail or parcel-delivery marketplace by providing more infrastructure exclusive to their platform. It can also expose antitrust / competitive-access issues where other courier firms or online retailers can’t gain access to self-service unattended-delivery arrangements.

This issue can be answered either through an app-based approach that works with the smart-home / Internet-of-Things ecosystem to interlink with IT systems associated with the goods-delivery industry; or a common platform adopted by the courier / messenger and online-retail industry that integrates unattended-delivery storage as part of the workflow.

Similarly, these systems need to have a level of flexibility such as being able to work with multiple smart locks on the one property. This would be to facilitate a locked gate and / or two or more storage spaces such as a trunk-style cabinet for small items and a larger storeroom for larger consignments; or to provide a private storage space for each dwelling on that property such as a house converted to apartments.

Conclusion

The online retail marketplace has brought about a discussion regarding management and secure storage of consignments that are delivered to unattended addresses.

Send to Kindle

Audio–Video Newscasts On Demand–Could this be real

Kogan Internet table radio

Traditional radio and TV broadcasters could augment their newscasts by having them on-demand

A question that can be raised in the online era is whether radio and TV broadcasters need to place their latest newscasts “on demand” alongside running them at the appointed times.

This is to encourage us to find relevance for traditional broadcast media in an age where the preferred source for information and entertainment is from online media services including social media. It is also about finding ways where traditional public-service and commercial broadcast media can maintain their influence in an age where Silicon Valley is obtaining more clout.

The typical newscast situation as it stands

What typically happens with radio is that most stations will ordinarily run a short-form newscast of up to five minutes long on the hour. Some of them even run an additional newscast on the half-hour during the breakfast programme as people are getting ready for work. It doesn’t matter whether the radio station serves as an informer like the talk-based stations or as an entertainer like music-based stations. Some stations who don’t have their own news-gathering team usually syndicate another station’s short-form newscasts to keep their listeners up to date with the news.

For TV, the traditional broadcasters, especially free-to-air broadcasters, frequently run regular short-form news updates, commonly known as “newsbreaks”, inserted between programmes or during commercial breaks. They are typically used to announce breaking news or updated news items or provide a succinct overview of what’s going on. This is in addition to the main long-form half-hour news bulletins run during breakfast, midday, early afternoon, early evening (which is TV’s prime time) and late evening.

Some of these stations may run dedicated newsbreaks focused on particular themes like local weather or financial / business news. The TV stations who advertise on local radio during the afternoon drive-time programme are more likely to run an audio equivalent of a newsbreak as their commercial for that daypart in order to create public interest for their main evening news bulletin.

Let’s not forget that all these broadcasters will run newsflashes, even interrupting regular programming, when there is significant breaking news.

The current way we consume media

But we are living in an environment where we rely on on-demand entertainment like Spotify, podcasts, Netflix and catch-up TV services. We even end up in an environment where sports is the only reason for watching or listening to linear real-time broadcast content. Similarly, some of us use PVRs to record TV shows and may find ourselves with “banked up” TV-show collections on these devices especially if we travel or not watch any TV for a while.

But most radio and TV stations’ Websites provide news clips for each of the news items that occur through the day, more as a way to allow people to learn more about particular events or share them on blogs or the Social Web. This is based on the “portal” idea that was started when the Web cam in to the mainstream and these broadcasters wanted to augment their daily broadcasts with a Web-based newspaper.

How can radio and TV news fit in with today’s media habits?

Amazon Echo, Google Home or similar platforms could be used to summon the latest news

But having the latest radio and TV news available in an on-demand context can earn its keep with a significant number of use cases.

For example, a short-form newscast like a radio news bulletin or TV “newsbreak” could earn its keep with a voice-driven home assistant where you could ask for the latest news. In this case, you could say “Hi Alexa, what is the latest news from the ABC?” and you would hear the latest local ABC Radio newscast together with the ABC’s newscast signature tune we have loved. If you are dealing with a voice-driven home-assistant device equipped with a screen like Amazon Echo Home, you could ask the voice assistant for the latest news from a TV station like the Seven Network whereupon you would see the latest newsbreak. In those situations where you have separate short-form newscasts for finance, sport, weather and other topics, it could be feasible to ask the voice assistant for one of these newscasts.

Amazon Echo Show in kitchen press picture courtesy of Amazon

Even a device like Amazon Echo Show could run the latest TV “newsbreak”

Similarly, a podcast or music player app could support the insertion of short-form news bulletins between podcasts or between tracks after a certain time has passed. A TV network having the latest newsbreaks online through their catch-up TV services or through YouTube can allow users to “pull up” short-form news content as required.

There could be the ability to draw down that long-form prime-time TV news bulletin via a “catch-up” TV service so one can catch up with the day’s news at a time they see fit. Even offering an audio-only version of one of these bulletins could earn its keep with a range of users like vision-impaired people or drivers.

What can broadcasters do?

Most broadcasters and networks don’t have to do anything with the news content that they make available through their channels. They simply have to keep the recordings of short-form and long-form news bulletins available and indexed according to time of publication.

Radio stations can even record the bulletins that are not normally recorded like traffic bulletins to provide an experience similar to what Blaupunkt achieved with their Traffic Information Memo feature on some of their 1990s-era car radios. This was where the car radio would operate in a standby mode for three hours when the car is parked and record traffic bulletins as they come through from the last-tuned radio source. It relied upon established standards commonplace in Europe for providing machine-to-machine signalling for these broadcasts, namely the RDS system. Then the driver would be able to press a blue “TIM” button to hear the last four traffic bulletins that were recorded.

This can be facilitated in a manner similar to what happens with podcasts where the latest content is available through an RSS Webfeed. Most talk stations would be familiar with this practice when they make their shows available as podcasts or for syndication to other stations. But they also need to keep their “branding” alive with these newscasts like maintaining the use of their news signature tunes at the start of each bulletin so people know they are dealing with their favourite broadcasters. Let’s not forget that a single URL should then be used to provide a Weblink to the latest news bulletin for the various voice-driven-home-assistant skills, mobile apps and the like to locate that resource.

The idea could be augmented by having a standard metadata flag for RSS Webfeeds containing audio or video content like podcasts that represents the fact that the feeds are news bulletins. Here, it could allow “podcatcher” and similar software to treat them as a news bulletin then retain and play just the latest newscast. As well, if the software has always-live Internet access, it could make sure it’s always up to date with the latest news bulletins that the user wants.

As well, broadcasters and allied organisations can create “skills” for voice-driven home assistants along with “channels” for on-demand video services. It can extend to linking them to standard application-programming interfaces to facilitate “news-on-demand” apps and services.

There has been some investigation by online media providers, especially those who have advertising in their business model to permit free or freemium access like Spotify or YouTube to allow the insertion of newscasts in online-advertising spaces. Similarly, providing it as an optional service or “channel” on a streaming service is being seen as a way to add value to these services.

But this kind of application especially where newscasts are inserted in to a playlist could be seen as heretical by the Millennial generation who want to break away from traditional broadcast media and the methods they use. This is although having the latest radio and TV newscasts on demand through various mechanisms is really about mass customisation.

Conclusion

What will be required of traditional radio and TV broadcasters who maintain a strong profile with their newscasts is to “think outside the box” with how they are used. This means being able to take them further and integrate them with Amazon Alexa, Google Assistant & co; or effectively have them as part of “custom-content” strategies.

Send to Kindle