Tag: Bluetooth audio

Turntables with digital output–are they worth it

Pro-Ject T2W Wi-Fi Turntable press image courtesy of Pro-Ject

Pro-Ject T2W Wi-Fi turntable – an example of a turntable with a digital output

The recent vinyl revival has been driven not just by the hipsters who saw the vinyl record as an ironic statement but also by people who grew up through most of the late 20th century where these records were the main music distribution format.

Some of these people even kept a music system that can play vinyl records along with a sizeable record collection, and kept putting these records on even when there was an expectation in the 90s and 2000s to move away from that format. In some cases, these people kept vinyl records that wouldn’t be reissued on any newer media. This is in addition to DJs who worked with vinyl records and, in some cases, used the turntable as a musical instrument.

As well, the turntable and a collection of classic-rock records by talent like the Beatles, Pink Floyd or Fleetwood Mac recently became an alternative to the motorcycle or sports car as a “mid-life crisis” symbol for men. This is because of these men were teenagers or young adults through the 1960s and 1970s where this kind of music was played on vinyl records using a reasonably-priced but good-sounding hi-fi system.

What are these turntables that have digital outputs

VinylPlay - an integrated-phono-stage turntable that raises the bar for this class of turntable

VinylPlay – an integrated-phono-stage turntable that raises the bar for this class of turntable

As part of the vinyl revival, nearly all turntable or record-player manufacturers are offering at least one turntable or record player with a digital output of some sort like Bluetooth, Wi-Fi or USB or a digital recording subsystem.

Nearly all of this equipment has the customary “from-the-cartridge” analogue output that can be a raw phono-grade signal for use by amplifiers with a PHONO input, or an amplified line-level signal for equipment that only has a line-level input. This would be in addition to the digital sound path mentioned above and would permit, in the case of a Bluetooth turntable that you used with a Bluetooth speaker, you to upgrade towards a better hi-fi setup with an integrated amplifier and pair of speakers.

There are some record players that use digital inputs like Bluetooth or USB as an “external-equipment” programme source for their onboard amplifier which amplifies the sound for integrated or connected speakers. But the turntables are their to work with a separate amplifier or sound system.

Why do these turntables and record players exist

A few reasons these turntables and record players have appeared include people dabbling in vinyl for the first time and using Bluetooth headphones or speakers as their initial audio setup. Or your audio system uses am amplifier that omits a tape loop connection to connect a recording device to but you want to record your vinyl records to your computer for mobile use or to salvage them.

The audio signal path in these turntables

The signal path from the moving-magnet cartridge that follows your record’s grooves is sent via a preamplifier that brings the music signal to a stronger line-level signal, then to the analogue-digital conversion circuitry which converts the analogue signal to a digital signal for the digital use case. This is similar to a regular turntable that is connected to an amplifier that implements digital signal processing or “digital-to-the-speaker” amplification like some new Technics amplifiers do.

The digital use cases that come about for these turntables are:

  • Bluetooth audio source which works wirelessly with Bluetooth speakers or headphones
  • Wi-Fi or Ethernet home network connection to work with a network-based multiroom audio setup or DLNA-compliant audio setup
  • USB Audio Device class source connection so you can plug the turntable in to your computer to record that LP using digital-audio-workstation software
  • Digital recorder subsystem to record that LP to a USB memory stick or similar storage device

These will still play your records properly

All of these turntables are engineered in a similar way to most of the other well-bred turntables that exist out there. Typically this is because these turntables are part of a series of products offered by a manufacturer that share a common design and are offered as an “extra feature” model in the series. The moving-magnet pick-up cartridges used on these turntables are of the same expectation for something that would be on the end of a decent turntable’s tonearm.

As well, they still maintain that traditional record-playing experience with most offering a fully-manual operation approach. Or some units have some form of automatic operation such as for themselves to lift the tonearm off the record at the end of the side or to have you press a button or move a lever to have the tonearm move to the start of the record and commence playing then park itself at the end of the record. Of course, the tonearm on these turntables is equipped with a cueing lever to protect the stylus when you lift the arm on to the record.

Analogue purists will not like the idea of these digital-output turntables because they expect the audio signal to travel from the pickup cartridge to the speakers via amplification that is purely analogue in nature. This is the same group who will not like analogue-digital-analogue amplification approaches that Technics, JBL and a few other names have been dabbling in. It is although these turntables offer the analogue audio output whether as a line-level output or as a “phono-level” output for external phono preamplifiers or amplifiers with their own phono-stage circuitry. As well, some of these turntables have a switch to turn off the power to the digital-audio circuitry which will benefit those who want that pure analogue sound that isn’t tarnished by any digital circuitry.

Some extra compromises may appear with this digital-audio approach. This can be where the analogue-to-digital circuitry may be sub-par or Bluetooth applications may limit the codec to SBC which is not really fit for hi-fi. Units that implement an on-board USB recorder function can be limited by the inability to select high-grade lossless audio filetypes like WAV or FLAC for recording.

You may also find that it may be difficult to set up the digital functionality in some of these turntables. For example, pairing a set of Bluetooth headphones to a Bluetooth turntable may be difficult, or the recording procedure may be difficult for a unit that implements its own USB recorder.

My comments about these digital-output turntables

Personally I would see the purchase of a turntable with digital output as being something that suits your particular needs. This could range from something that can facilitate salvaging cherished or way-out-of-print records using your computer, to use with your network-based multiroom audio system or to use with Bluetooth headphones or speakers.

Here, the purchasing of these turntables is made easier because you can refer to the “baseline” model of the same series to see whether they are something you would like to play your records on. On the other hand, if you are satisfied with your turntable and amplifier, you may not need to buy any of these turntables that have digital outputs.

It is more so where your amplifier has a line-level output independent of the volume control like a “tape output” typically used for cassette decks or other recording devices. In this case, you could connect up a USB sound module, Bluetooth transmit adaptor, network multiroom audio “on-ramp” adaptor or similar device to the amplifier to suit your digital audio needs. Some of you who own a record player or vinyl-capable three-piece music system may find that your equipment may have one of these line-level outputs.

These turntables don’t diminish the analogue character of vinyl records but are able to extend them to particular use cases such as to provide elementary private listening through Bluetooth headsets or salvaging them. Here, it is about choosing the right turntable for your needs but making sure you are getting a good-quality unit that you can trust with your vinyl records,

What is happening with Bluetooth speakers

LG SoundPop 360 Bluetooth speakers press picture courtesy of LG

LG SoundPop 360 Bluetooth speakers
– an example of the popular Bluetooth speakers

A very popular accessory for smartphones, tablets and laptops is the Bluetooth speaker. These speakers connect to your mobile device via Bluetooth and work as an audio output device for it.

The typical design for most of these speakers is to be a highly portable battery-operated unit that can fill a small area with sound in a manner equivalent to the typical portable radio. These appear in many different sizes from something that fits in your palm to larger tube-shaped units that can be carried using a strap or shoved in your coat pocket. Add to this an increasing number of larger cube-shaped speakers that put out a bass rich sound.

Add to this larger mains-powered bookshelf active speakers that have Bluetooth audio functionality in them along with a variety of inputs like analogue line-level and phono inputs or USB, SP/DIF and HDMI digital-audio inputs. These are being pitched as a way to set up a stereo for an office or small apartment.

In a lot of cases especially with portable speakers, these have a built-in microphone so they can become a speakerphone for your mobile device, something that can come in handy for conference calling including Zoom calls. But some Bluetooth speakers like the B&O Beosound A1 2nd Generation speaker even have this function set up so they work with your smartphone or tablet as a voice-activated smart speaker.

T

Bang & Olufsen Beosound A1 Bluetooth smart speaker press image courtesy of Bang & Olufsen

Bang & Olufsen Beosound A1 2nd Generation Bluetooth smart speaker that works with a smartphone or similar devicce to benefit from Amazon Alexa

hese exist in a universe of Bluetooth audio endpoints like audio adaptors that work between a line-level audio connection and Bluetooth Classic audio as either a transmitter or receiver. This is in addition to home audio equipment receiving Bluetooth audio as an input and/or transmitting content available to it as a Bluetooth audio stream.

An example of this is in the form of portable and mantel radios that work as Bluetooth speakers. This device class has capitalised on the interest over the last 15 years in premium radios thanks to the likes of Bose and Tivoli offering radios that look and perform “above average”; the nostalgia for vintage-styled radios, along with broadcast radio being delivered via digital-broadcast technology or Internet technology and yielding programming exclusive to those technologies.

It includes companies offering audio source devices like turntables or CD players that stream to Bluetooth speakers. This is because the Bluetooth audio specifications are in fact “application-level” specifications that have been pre-determined for a long time, so there as surety that their source devices can work with any Bluetooth audio endpoint device. Here, it could allow someone to create an elementary sound system around that device and a pair of Bluetooth speakers.

Some of these speakers come with other features like LED-driven “party lights” or very large batteries that work as powerbanks for charging mobile devices. As well, a lot of larger portable Bluetooth speakers make use of passive radiators as a way to increase their bass response while others rely on an app-driven approach to allow you to adjust their sound quality from your smartphone.

Multi-speaker operation

But, thanks to Bluetooth 5, there has been an interest in multi-speaker Bluetooth audio approaches. This comes in the form of two operating modes:

Party Mode: Multiple speakers play the same programme content from the same source device with speakers that are stereo-designed playing the content in stereo across the speakers in that same box. This is to provide more sound coverage, typically for entertaining people at a party. Most such setups can handle a relatively large number of speakers due to latency not being considered important for this use case.

Stereo Mode: A pair of like speakers are set up so that one plays the left channel of a stereo programme source from one source device while the other plays the right channel of that same source. This is to improve the channel separation for the stereo content.

Typically manufacturers are limiting this functionality to a subset of their Bluetooth-speaker product range, more so the products in the “value” and “premium” market positionings.

These operating modes may work in one of two arrangements;

Source-to-speakers / hub-and-spoke: The source device streams the audio content to the speakers at once. This is typically implemented for stereo-mode operation so as to reduce latency by making sure the data gets to each speaker without any middleman device processing it.

Speaker-to-speaker / daisy-chain: The source device streams the audio content to one speaker which passes it on to other speakers down the line. This appeals to party-mode operation so as to permit large numbers of speakers to be in the setup. It may allow speakers to introduce some latency but this isn’t an issue for party-mode operation due to the goal of covering a large area with sound.

What to watch

Bluetooth LE Audio and its impact on Bluetooth speakers

Bluetooth LE Audio has been cemented in stone as the next-generation Bluetooth multimedia audio standard and is expected to provide a raft of improvements for this device class.

This implements the Bluetooth LC3 audio codec which is about efficient audio data transfer and even improve sound quality, operational stability and battery runtime. Here it also allows mobile-technology designers to avoid reinventing the wheel for audio-codec improvements when it comes to baseline audio performance for Bluetooth audio.

For portable Bluetooth speakers, this could be about allowing you to move around more freely with your mobile device without fear of losing the music as well as being able to run for a long time before needing to be charged up. As well, there will be the ability for these speakers and similar devices to cope with congested 2.4GHx wireless environments like in a city centre because of the robustness that the LC3 audio codec will offer.

This could impact how they are designed such as to have portable speakers that are lighter because of not needing to design around large battery packs. There will also be the chance to design higher-quality portable Bluetooth speakers that take advantage of higher quality sound that the new codec offers. Multi-speaker setups, especially based on Auracast, could be benefitting if the setup permits meshed or daisy-chained operation because of reduced latency in such setups and less impact on battery runtime for the actual sound reproduction.

Auracast broadcast audio will come in to its own with Bluetooth speakers that implement the Bluetooth LE Audio standard. Firstly, this could be about multiple-speaker party-mode operation without a requirement to use particular speakers from the same manufacturer. It may even allow the use of multichannel setups within the same Auracast multi-speaker setup rather than having “party mode” or “stereo mode” being mutually exclusive. Here, you would be using “audio sharing” on your phone, tablet or laptop to facilitate this mode with the device being enabled for Bluetooth LE Audio and Auracast.

As well, Auracast-based broadcast audio and Bluetooth speakers can be a perfect partner here. For example, a small Bluetooth speaker used in this context could be about close listening to an alternative soundtrack for video or other content or following an event going on in a nieghbouring area from another small room where you might be engaging in activity relating to that event.

Similarly, Auracast with Bluetooth speakers could be a logical follow-on to FM radio where listenership using BYO audio devices is desired for an event hosted in an area with a small footprint.

Previously, radio broadcasters were often collaborating with event organisers to broadcast the musical soundtrack to a large public event like a fireworks display, street parade or motorcade. Then you would have to bring a portable radio to that event and tune in to that station to follow the soundtrack using that radio to get the best value from that event. This approach may be seen as irrelevant for a radio station with a large broadcast area like a major city’s metropolitan area unless the event has a large footprint that takes in more of that broadcast area such as a fireworks display encompassing a waterway that passes through the city.

Similarly, there were the drive-in cinemas where you tuned your car radio to a particular frequency to hear the film’s soundtrack. Here, this was limited to what the FM band was about and issues like destructive multipath that could ruin your listening experience.

Here, Auracast could lead towards a license-free wireless audio distribution approach centred around Bluetooth speakers that implement Bluetooth LE Audio technology. It would also be about increased flexibility within the setup like multichannel speaker clusters (think stereo pairs or speakers plus subwoofer setups).

The Bluetooth LE Audio specification will also impact multiple-input operation for Bluetooth speakers. This could be about seamless multipoint operation when you want to use a speaker with a smartphone and laptop or allowing your party guests to contribute to the music at your party using their devices. It could also be about party speakers that work with Bluetooth LE Audio microphones for karaoke and PA usage.

How Bluetooth LE Audio will come in to play for devices like Bluetooth headsets and speakers is the availability of dual-mode system-on-chip circuitry for this class of device. This will allow devices to work in a Bluetooth LE Audio or Bluetooth Classic Audio mode depending on what Bluetooth device they are working with, so as to assure maximum compatibility.

What could be done

There could be an emphasis towards optimising for and promoting mesh operation within multiple-speaker setups. Here, it can be used to make these setups more robust including allowing you to position your smartphone or other source device near any of the member speakers to assure audio continuity.

Multi-speaker setups could also be about bass improvement such as to add a subwoofer in to a party-mode or stereo-mode setup to pump up the bass. This also includes use of speakers that implement separately-amplified bass drivers being capable of working as part of these setups, especially “stereo-mode” setups.

There could be less reliance on “app-cessory” operation for common advanced functionality like tone control or lighting control. This could be facilitated with application-level functionality in Bluetooth LE Audio for these functions and avoid the need to create buggy apps for mobile and desktop platforms.

Manufacturers could look towards offering a variant of their Bluetooth speaker designs that has a broadcast-band radio tuner built in. Here, if you had already bought a particular speaker and then know there is one of the same design as what you already bought but has the radio functionality as well, you could justify buying the one with the radio so you can have a pair of speakers for party-mode or stereo-mode operation. It could also incentivise the manufacturer to design the speakers to work in multi-speaker mode for radio broadcasts as well as your phone’s audio.

It could extend to Bluetooth speakers that have line-input connections being able to stream the device connected to that input across a multi-speaker setup. This would extend the utility of that connection for multi-channel setups or party-mode setups.

Other complementary standards could be worked on to bring more utility out of the Bluetooth speaker class. For example, the HDMI-ARC standard could be worked on in a manner to support delivery of multiple soundtracks for the same video content. Here, this could incentivise the development of soundbars and AV receivers that allow streaming of different soundtracks to Bluetooth audio endpoints associated with the same device. That could allow a viewer to hear an alternate-language or audio-described soundtrack for video content using a Bluetooth headset or speaker paired to the soundbar or AV receiver while others hear the main soundtrack for that same content through that soundbar.

What I see that will affect Bluetooth speakers is the next few model cycles is to have Bluetooth LE Audio support as a heavily-marketed feature that will improve how they operate in many ways. It is something that I would see drip through a manufacturer’s Bluetooth audio product range.

A highly compact Bluetooth audio transmit-receive adaptor from TaoTronics

Article – From the horse’s mouth

TaoTronics

TaoTronics Bluetooth Transmitter for TV 2-in-1 Wireless 3.5mm Adapter (Product Page)

My Comments

Another highly-portable Bluetooth audio adaptor worth mentioning is the TaoTronic Bluetooth Transmitter for TV. This device sells for USD$21.99 in the USA direct from TaoTronics through the product link above but Kogan are selling this in Australia for AUD$55.00 with tax and shipping included to Australia.

Bose QuietComfort QC35 II noise-cancelling headset optimised for Google Assistant - Press picture courtesy of Bose Corporation

Can be used to stream TV audio to a pair of good headphones like these Bose QuietComfort headphones for private late-night listening

Like the Twelve South AirFly that I covered previously, this battery-operated device can stream audio content from a headphone jack that it is plugged in to to a pair of Bluetooth headphones. The obviously comes in to its own when using your Bluetooth headphones on the plane to watch a movie via the in-flight entertainment setup; working out at a fitness centre which implements an audio distribution setup for TV sound or workout music fed to headphones; or watching TV late at night with the sound via headphones.

But this device also is about being a Bluetooth receiver adaptor where you send audio content from your smartphone, tablet or laptop computer to a sound system so you can use its speakers for that music. Here, the TaoTronics adaptor has a 3.5mm stereo phone jack and comes with a patch cord with a 3.5mm stereo phone plug at each end as well as an adaptor cord that has a 3.5mm stereo phone jack at one end and two RCA plugs at the other end.

Cassette adaptor in use with a smartphone

A cassette adaptor being used to play a smartphone’s audio through a car cassette player – the TaoTronics Bluetooth transmit-receive adaptor can even be about a wireless link between the phone and the adaptor

But you can use other connection devices like longer or better cables to achieve the same goal in a better way. You could even plug a cassette adaptor in to this TaoTronics adaptor and effectively stream your smartphone’s multimedia audio through that cassette player installed in your 1970s-1990s classic car. As well, for newer cars, this would be about using the car stereo’s AUX input to stream multimedia audio from your phone to the car stereo even if the Bluetooth setup is only about communications audio.

This is powered by a battery that is quoted to have a 10-hour battery runtime or via a USB power source fitted with a USB micro-B plug. Product pictures even illustrate you powering the device from one of the USB sockets on your TV that will typically be used for a Wi-Fi adaptor to to play video from a USB memory key. You can even have the device’s battery charging while you are using it to transmit sound to your headphones or play a Bluetooth audio stream through your favourite audio system.

It is user-friendly in the context that you don’t have to perform a special rigmarole with the pairing button to switch between transmit or receive modes. Rather you just flick a mode switch between “transmit” and “receive” modes. There is still a button to instigate device pairing where necessary.

The size of this device is smaller than the typical smartphone which, along with battery / USB operation, incentivises you to take it on the road more frequently. A good travel scenario that may come about is to use the adaptor with your Sony WH-1000XM4 or Bose QuietComfort 35 Bluetooth active-noise-cancelling headphones to hear a movie on the inflight entertainment system during the flight. Then, when you are at the hotel, you plug this device in to the “audio input” jack on your hotel room’s TV to play Spotify music through that TV’s speakers.

In-room AV connection panel

The TaoTronics Bluetooth transmit-receive adaptor can even work well with your hotel-room TV if it has an AV connection panel like this with a 3.5mm stereo mini phone jack for audio input

The TaoTronics Bluetooth audio transmit-receive adaptor supports Qualcomm aptX operation but only for one device at a time. Otherwise, it can stream audio to two headsets which can come in handy where two people are listening to the same audio source like a TV programme. It also works according to the latest Bluetooth 5.0 standard thus allowing for increased audio stability and battery efficiency along with the ability to run two headsets.

TaoTronics could have a variant of this device that works in a “communications and multimedia” mode like the Sony SBH-52 headphone adaptor that I used previously. This could earn its keep with wired headphones or automotive setups where you need to have full-on handsfree communication and audio playback with the same device.

But this is an example of a highly-compact easy-to-use device that can be about either streaming audio from your phone via Bluetooth to an existing sound system or using your favourite Bluetooth headphones to hear TV sound in private.

Consumer Electronics and Personal IT trends for 2020

Every year in January, the Consumer Electronics Show is run in Las Vegas, USA and this show does give a glimpse in to what trends will affect consumer electronics and personal IT. In most cases, these are products that will be on the marketplace this year or products that are a proof-of-concept or prototype that demonstrates an upcoming technology.

The problem is that this exhibition focuses on what will be available in North America but a lot of the technology will be relevant to the rest of the world. In a lot of these cases, localised variants will appear at various trade shows or PR events that occur in Europe or other areas.

As well, the trade-show circuit will attract service-level information-technology companies who don’t need to make hardware or have a hardware platform, or be a content creator. Here, it will be simply about the provision of IT-based services as part of a ubiquitous computing environment including the concept of experience-driven computing.

Connectivity Technology

Over the past year, the two main technologies that were called out regarding online connectivity or the home network were 5G mobile broadband and Wi-Fi 6 (802.11ax) wireless local networks. This is about very-high-bandwidth wireless data communications whether out and about or within your home or other small network.

As various radiocommunications regulatory agencies around the world “open up” the 6GHz waveband for Wi-Fi network use with the USA’s Federal Communications Commission the first to do so, the Wi-Fi Alliance have created a specification identifier for network equipment working this waveband. Here, it is known as Wi-Fi 6E as a way to identify the fact that the device can work the 6GHz waveband, and is in contrast to Wi-Fi 6 (802.11ax) devices that only work the 2.4GHz and 5GHz wavebands.

D-Link DIR-X5460 Wi-Fi 6 router press picture courtesy of D-Link USA

One of D-Link’s Wi-Fi 6 routers that also supports Wi-Fi EasyMesh – setting the standard for home network technology this year

Both these technologies became real with an increase in client devices or small-network infrastructure hardware supporting at least one of these technologies. This included laptop computers and smartphones having this kind of functionality baked in to them as well as more home-network routers, distributed-WI-Fi systems and range extenders being equipped with Wi-Fi 6. There is even the fact that some of the network-infrastructure vendors like Linksys and NETGEAR are offering routers that combine both technologies – 5G mobile broadband as a WAN (Internet) connection and Wi-Fi 6 as a LAN (local-network) connection.

A step in the right direction for distributed-Wi-Fi networks was to see major home-network brands offer routers and/or range extenders compliant to the WI-Fi EasyMesh standard. This allows you to create a distributed Wi-Fi network with equipment from different vendors, opening up the market for equipment from a diverse range of vendors including telcos and ISPs along with a pathway towards innovation in this space.

Bluetooth hasn’t been forgotten about here with the new Bluetooth audio specification being “set in stone” and premiered at CES 2020. This specification, known as Bluetooth LE Audio, works on the Bluetooth Low Energy profile and supports the LC3 (Low Complexity Communications Codec) audio codec that packages the equivalent of an SBC audio stream used by Bluetooth audio setups in half the bandwidth. This allows for longer battery runtimes which will also lead to smaller form-factors for audio devices due to the reduced need for a larger battery.

It also supports multiple independent and synchronous audio streams to be sent from one source device to many sink devices. This strengthens use cases like hearing aids that work with Bluetooth and may supersede the inductive loop as a technology for assisted-listening setups. As well, the multiple-streaming technology will be a boon to applications like multichannel Bluetooth speaker setups; or Bluetooth headphones as part of assistive audio, multilingual soundtrack options or semi-private listening arrangements.

The Bluetooth LE Audio technology is to be released in the first half of 2020 with compatible devices being on the market by 2021. But there will also be the issue of having device support for this technology being baked in to operating systems as a class driver.

Dell XPS 13 2-in-1 Ultrabook - USB-C power

USB 4 will be the next stage for hardware connectivity and will include Thunderbolt 3

As for wired peripheral interconnection, USB 4.0 will be surfacing as a high-speed connection standard for computers and mobile devices. There will be compatibility with Thunderbolt 3 due to Intel signing over the intellectual property rights for that protocol to the USB Implementers Forum. But this may be used by some computer vendors as a product differentiator although the market will prefer that USB 4 computers and peripherals work with those that use Thunderbolt 3. Let’s not forget that the physical connector for USB 4 will be the Type C connection.

Let’s not forget that newer Android phones will use USB Power Delivery as the official standard for transferring power from chargers or powerbanks to themselves. This is about avoiding the use of proprietary fast-charge technologies and using something that is defined by the industry for this purpose.

Computer trends

Lenovo IdeaPad Creator 5 15" clamshell laptop press picture courtesy of Lenovo USA

Lenovo IdeaPad Creator 5 15″ clamshell prosumer / content-creator laptop

At the moment, as I outlined in the article about “prosumer” content creators being identified by computer manufacturers as a significant market segment, this year is being seen as a time to launch performance-optimised computers targeted at this user group. These units will be optimised to work with popular content-creation software in a sure-fire manner.

Let’s not forget that Lenovo is tying up with NEC in order to create the LAVIE computer brand that targets mobile professionals. This was after Toshiba spun off their laptop-computer division as “Dynabook” brand then sold it to Sharp; and Sony sold off their VAIO computer brand with it existing as a premium computer brand. But is this symbolic of what the Japanese computer names are heading towards where they focus on creating premium business laptops and tablets.

As well as offering their newer-generation CPUs, Intel has demonstrated that they can offer their own high-performance personal-computer display infrastructure. They even demonstrated a graphics card that use Intel-designed discrete GPU technology. This leads towards them competing with NVIDIA and AMD when it comes to discrete graphics-infrastructure technology and could lead to a three-way race in this field.

It is alongside AMD placing a lot of effort on their Ryzen CPUs which are leading towards them in a position to effectively compete on a par with Intel’s Core CPUs. As well, Intel and AMD could head towards creating performance computing setups that are based around their CPUs and discrete graphics infrastructure technology, including setups that have the CPU and discrete GPU on the same silicon.

There is also an increase in the number of “Always Connected PCs” that run with ARM RISC microarchitecture rather than the traditional Intel i86/i64 CISC microarchitecture. They will be about operating on batteries for a very long time and have 4G, if not 5G mobile-broadband modems with classic SIM or eSIM service authentication. Most likely I would see them as being the direction for portable mainstream business computing.

Dell G5 15 Special Edition budget gaming notebook press picture courtesy of Dell USA

Dell G5 15 Special Edition budget gaming laptop with AMD Ryzen and Radeon silicon

For gaming, Dell has premiered a budget gaming-grade laptop that uses an AMD Ryzen CPU and an AMD Radeon graphics processor but is styled like their other “G Series” gaming laptops. As well, Lenovo took an interesting step with one of their gaming laptops by using Intel integrated graphics processors for its graphics infrastructure while equipping it with a Thunderbolt 3 port. Here, the user is to buy an external graphics module, typically the Lenovo BoostStation card-cage unit which is their first product of its kind that they released, to have the machine perform at its best. What this is about is a trend towards creating an entry-level performance laptop product range, very similar to buying the increased-performance “GT” variant of a popular family car model.

Lenovo ThinkPad X1 FOLD prototype folding-display computer press picture courtesy of Intel USA

Co-engineered by Intel and Lenovo, ThinkPad X1 FOLD is a foldable-screen device built on the Intel Core processor with Intel Hybrid Technology (code-named “Lakefield”). (Credit: Lenovo) – an example of what folding computers are about

 

Another trend that is being shown frequently is multiple-screen or folding-screen portable computers. This is being promoted by Intel and Microsoft in the context of Windows 10X and newer Intel chipsets. It is being driven by the multiple-screen or folding-screen smartphone that Samsung and others are on the verge of releasing as finished products. But this technology will have a limited appeal towards early adopters until it is seen as legitimate by the general user base.

As far as small-form-factor desktop computers are concerned, Intel is working towards a modular “next unit of computing” platform which has the whole computer system on a card the same size as a traditional PCI expansion card. This platform, known as Ghost Canyon uses the “Compute Element” which is the user-swappable card, is intended to bring hack the joys of us upgrading a computer’s performance by ourselves even if we go for a smaller computer platform.

Connected-TV technology

This year has heralded interest in 8K UHDTV which has effectively twice the resolution of 4K UHDTV. As well, the 8K Association has been formed in order to set standards for domestic 8K UHDTV applications and promote this technology.

It is in conjunction with ATSC 3.0, also known as NextGenTV, being premiered at CES 2020 as a new direction for free-to-air TV in the USA. It us being valued thanks to people moving away from cable and satellite pay-TV services towards Netflix and other video-on-demand services augmented by free-to-air TV. Here, it will allow Americans to benefit from 4K UHDTV and Dolby Atmos technology via the TV antenna. Like with DVB and HBBTV-based standards used in Europe and Oceania, this technology combines the over-the-air signal with broadband Internet data to achieve advanced TV experiences.

There is also increased robustness as far as antenna-based reception is concerned which may allow for use of indoor antennas without their associated problems. As well, mobile users will benefit from this newer technology for on-the-road viewing. But there will also be an emphasis towards broadcast-LAN operation with one tuner offering a broadcast signal amongst multiple TVs. Users can upgrade their existing televisions to this technology by connecting an ATSC 3.0 set-top box to their TV as they see fit, but there will be some TVs, most likely “living-room” models from a few manufacturers, that will support this standard.

The 4K AMOLED screen is entering the “Goldilocks” territory when it comes to product price and screen size – not too big and expensive, not too small or cheap, but just right. It is seen by the trade as a “mid-market” territory but, for a TV, it is about something that appeals to more people without being too ostentatious or requiring one to pay a price’s ransom.

The advantage it has over the LCD screen that rules this market territory is to have increased contrast and richer colours, something that those of you who have a smartphone or tablet with an OLED display benefit from. As well, it is a technology that legitimises the high-dynamic-range and wide-colour-gamut video reproduction technology being pushed by the film and video industries.

Here, Sony released the first 48” 4K AMOLED screen that would be able to fit most viewing areas. This includes apartments and small houses as well as use in bedrooms, or secondary lounge areas including living rooms which aren’t frequently used for watching TV. As well, some AMOLED TV manufacturers are pitching sets that cost under US$1000. Here, this price point puts the AMOLED TV within reach of most middle-class families who are considering upgrading to this kind of technology without paying a price that sounds too vulgar.

Another trend affecting TVs is support for variable high refresh rates. Here, it appeals towards games consoles being able to work with game-optimised variable-refresh-rate monitors typically partnered with PC-based desktop gaming rigs, offering the same kind of display refresh rate as the display card on a gaming-rig PC would offer. This is being factored in because the large-screen TV is being valued in the context of gaming, especially with one-machine multiple-player games or the excitement of playing a favourite game on that big screen.

As well, I see the Apple TV and Android TV platforms as dominant smart-TV / set-top-box platforms due to the existence of strong code bases, strong developer communities and a well-nurtured app store. Here, the Android platform will appeal to TV vendors who haven’t invested in a smart-TV platform along with some third-party set-top box vendors. But the Android TV platform as a set-top-box platform has to be disassociated from the so-called “fully-loaded” Android boxes that are sold online from China for access to pirated TV content.

This is being driven by an avalanche of video-on-demand services that will appear over this year. Some of these will be subscription-based and offer new original content produced by the service’s owner while others will use advertising, perhaps as part of a freemium arrangement, and work heavily on licensing deep back-catalogue material. There will also be an effort amongst the new video-on-demand providers to take an international approach, appearing in multiple markets around the world, most likely with the goal of licensing content in all international markets concurrently.

It will even lead to each content-production name having its own video-on-demand service that primarily hosts content from its stable. But the question that will come about is how many video-on-demand subscriptions will we be having to budget for and maintain if we want content that reflects our choices.

Audio Technology

The DAB+ digital broadcast radio platform is increasing its footprint within Europe and across some parts of Africa and Asia. It includes some European countries like Norway and Switzerland moving their broadcast infrastructure away from AM and FM radio to this technology.

Pure Sensia 200D Connect Internet radio

Pure Sensia 200D Connect Internet radio – a representative of the current trend towards the “hybrid radio” concept

Here, it would be about an increased variety of devices that have broadcast-radio reception functionality based on this platform, including those that have Bluetooth and/or Internet-radio functionality. As well, more vehicle builders are being encouraged to supply DAB+ radios as factory-standard in all of their vehicles. Let’s not forget that value-priced DAB+ and Internet radio equipment will be equipped with a colour display that shows things like station branding or album cover-art while you listen to that station.

RadioDNS will be something that facilitates a hybrid broadcast-broadband approach to broadcast radio. This will include the ability to switch between broadcast-radio channels and an Internet radio stream for the same radio station or allow for richer supporting content to appear on the set’s display. It can also be about a “single-dial” approach to finding stations on broadcast and Internet bands. But RadioDNS has been given more “clout” in to the USA due to it being able to work with AM, FM or HD Radio (IBOC digital radio on AM and FM) which is used there.

Sonos’s partnership with IKEA, the furniture store who sells furniture that you assemble yourself with an Allen key, is demonstrating that a high-end multiroom-audio platform can be partnered with a commodity retail brand. What it could lead to is an incentive to build these kind of platforms around a mixture of premium, value and budget units, allowing for things like a low-risk “foot-in-the-door” approach for people starting out on that platform or people who have the premium equipment building out their system with cheaper equipment in secondary listening areas. It could even put pressure on the industry to adopt a common standard for multiroom-audio setups.

The streaming audio-on-demand scene is moving in a manner as to shore itself up against Spotify. Initially this is about offering either an advertising-supported free limited-service tier as what Amazon and Google are doing, or to offer a premium service tier with a focus on CD-quality or master-quality sound which is what Amazon is doing. But it could easily go beyond the “three-tier service” such as improved playlists, underrepresented content, support for standalone audio equipment, and business music services. As well, your ISP or telco could be providing access to a streaming-audio service as part of their service package or you buy a piece of network-enabled audio equipment and benefit from reduced subscription rates for an online music service.

The headphone scene is setting some strong contenders when it comes to excellent value-for-money for noise-cancelling Bluetooth headsets.

Bose initiated this battle with the QuietComfort 35 II headphones with the technological press’s reviewers seeing them as a standard setter for this class of headset. Then Sony introduced the WH1000XM3 headphones and these were seen on a par with the Bose cans but at a more affordable price with some press using terms like “Bose-killers” to describe them. Bang & Olufsen came in to the party and offered a premium noise-cancelling Bluetooth headset known as the Beoplay H9. But lately Bose also answered Sony by offering the Noise Cancelling 700 headset that effectively did that job in a minimalist form. This is while Sony are intending to launch the WH1000XM4 this year to raise the bar against Bose and their current product.

As far as “true wireless” active-noise-cancelling earbuds are concerned, Apple with their AirPods Pro and Sony with their WF1000XM3 have established themselves at the top of the pack for excellence. What I see of this is someone else could answer them to achieve that same level of excellence especially at a value price. This product class is also likely to benefit from the Bluetooth LC Audio specification due to the requirement for a small battery in each earbud and the small size of each earbud.

What Apple, Bose, Sony and B&O are highlighting is that they could easily compete with each other to achieve excellent products when it comes to headphones you use with your laptop, smartphone or tablet. It could even be a chance for other companies to join in and raise the bar for premium everyday-use headset design, including the idea of having audiophile headphone qualities in this class of headset.

Voice assistant platforms and ambient computing

Amazon Alexa and Google Assistant will still bring forth newer devices, whether in the form of speakers or displays. But Amazon Alexa and Microsoft Cortana will be part of the Open Voice Initiative allowing the same physical hardware to handle multiple voice assistant platforms.

A question that will arise through this year is whether there will be a strong direction towards having these devices work as a fixed audio or video telephony endpoint. This is whether the device works in a similar fashion to the classic landline telephone service with its own number; or as an extension to a smartphone that is part of a mobile telecommunications service.

The voice-assistant platforms will end up becoming part of an ambient computing trend that is underscored by facilitators like Internet of Things and distributed computing. Here, it is about computing that blends in with your lifestyle rather than being a separate activity.

As far as the Internet Of Things is concerned, the Connected Home over IP protocol was set in stone. This effort, facilitated by Amazon, Google and Apple with the oversight of the Zigbee Alliance, is about an IP-driven Internet-Of-Things data transport architecture. The idea is to do away with protocol gateways which were being used with various smart-home applications but the manufacturers were goading consumers to use their own protocol gateways with their devices rather than a third-party solution. There will be an emphasis on a safe secure interoperable Internet-of-Things network.

Data security and equipment maintenance in our personal and business lives

The Social Web will be considered a very important part of our lives with us primarily benefiting from it on tablets, smartphones or highly-portable laptops.

But it will still be a key disinformation vector. One of the new methods expected to be exploited this year is the creation of deepfakes. These are audio and video items created using artificial intelligence to make it as though a person said something when they didn’t. There will even be the ability to make the voice or face of a deepfaked person appear older or younger than they were when they were recorded, while make the voice or face appear as fluid as that of a real person.

Here, it will be used as a cyber weapon to create political, social and business instability by these representing our leaders whether they be in government, business or other circles. The deepfake will also be of value as a phishing tool in order to make the threat or plea appear to be more authentic to the victim.

As well, ransomware will begin to take on a network-wide dimension and affect business and service availability. Sensitive data, whether of a personal or business nature, will end up becoming the bargaining chip for ransomware hackers. This is in contrast to access to a computer user’s data resources which was often the case with ransomware.

The Internet Of Things will also be considered a continual security risk especially due to poor software and firmware quality control. It will lead to a conversation regarding the maintenance of our online devices through their lifecycle, including making sure they are running software that is stable and secure.

Then there is the “end-of-support” issue where a manufacturer ceases to show interest on older online devices that are currently in use. That is a question that is surfacing when one invests a significant amount of money in to the devices and people don’t want to throw out older equipment just because the manufacturer doesn’t want to support it anymore. It also goes against the grain of the post-Global-Financial-Crisis attitude most of us have adopted where we don’t want to support a throwaway society but want to see what we buy exist for the long haul.

The Sonos debacle raised the issue about what level of functionality the user should expect from their device along with how platform-based setups consisting of legacy and newer devices should behave. It also raised the issue of keeping the device’s software stable and secure.

Conclusion

This year will be considered a very interesting time for our online life as we see improvements to existing technologies along with newer conversations about how system-based technologies continue to evolve with a secure stable mindset.

Major improvements expected to come to Bluetooth audio

Article

Creative Labs Stage Air desktop soundbar press picture courtesy of Creative Corporation

The Bluetooth connectivity that the Creative Labs Stage Air desktop soundbar benefits from will be improved in an evolutionary way

The future of Bluetooth audio: Major changes coming later this year | Android Authority

My Comments

One of Bluetooth’s killer applications, especially for smartphones and tablets, is a wireless link between a headset, speaker or sound system to reproduce audio content held on the host computing device.

At the moment, the high-end for this use case is being fought strongly by some very determined companies. Firstly, Bose, Sony and Bang & Olufsen are competing with each other for the best active-noise-cancelling over-the-ear Bluetooth headset that you can use while travelling. This is while Apple and Sony are vying for top place when it comes to the “true-wireless” in-ear Bluetooth headset. It is showing that the Bluetooth wireless-audio feature is infact part of a desirable feature set for headphones intended to be used with smartphones, tablets or laptops.

Let’s not forget that recently-built cars and recently-made aftermarket car-stereo head units are equipped with Bluetooth for communications and multimedia audio content. This is part of assuring drivers can concentrate on the road while they are driving.

JBL E45BT Bluetooth wireless headset

.. just like headsets like this JBL one

But this technology is to evolve over the second half of 2019 with products based on the improved technology expected to appear realistically by mid 2020. Like with Bluetooth Low Energy and similar technologies, the host and accessory devices will be dual-mode devices that support current-generation and next-generation Bluetooth Audio. This will lead to backward compatibility and “best-case” operation for both classes of device.

There is an expectation that they will be offered at a price premium for early adopters but the provision of a single chipset for both modes could lead towards more affordable devices. A question that can easily be raised is whether the improvements offered by next-generation Bluetooth audio can be provided to current-generation Bluetooth hosts or accessory devices through a software upgrade especially where a software-defined architecture is in place.

What will it offer?

USB-C connector on Samsung Galaxy S8 Plus smartphone

… like with the upcoming generation of smartphones

The first major feature to be offered by next-generation Bluetooth audio technology is a Bluetooth-designed high-quality audio codec to repackage the audio content for transmission between the host and accessory.

This is intended to replace the need for a smartphone or headset to implement third-party audio codecs like aptX or LDAC if the goal is to assure sound quality that is CD-grade or better. It means that the device designers don’t need to end up licensing these codecs from third parties which will lead to higher-quality products at affordable prices along with removing the balkanisation associated with implementing the different codecs at source and endpoint.

A question that will be raised is what will be the maximum audio quality standard available to the new codec – whether this will be CD-quality sound working up to 16-bit 48kHz sampling rate or master-quality sound working up to 24-bit 192kHz sampling rate. Similarly, could these technologies be implemented in communications audio especially where wide-bandwidth FM-grade audio is being added to voice and video communications technologies for better voice quality and intelligibility thanks to wider bandwidth being available for this purpose.

Another key improvement that will be expected is reduced latency to a point where it isn’t noticeable. This will appeal to the gaming headset market where latency is important because sound effects within games are very important as audio cues for what is happening in a game. It may also be of benefit if you are making or taking videocalls and use your Bluetooth headset to converse with the caller. Here, it will open up the market for Bluetooth-based wireless gaming headsets.

It will also open up Bluetooth audio towards the “many-endpoint” sound-reproduction applications where multiple endpoints like headsets or speakers receive the same audio stream from the same audio source. In these use cases, you can’t have any endpoint receiving the program material reproducing the material later than others receiving the same material.

A key application that will come about is to implement Bluetooth in a multiple-channel speaker setup including a surround-sound setup. This will be a very critical application due to the requirement to reproduce each channel of the audio content stream concurrently and in phase.

It will also legitimise Bluetooth as an alternative wireless link to Wi-Fi wireless networks for multiroom audio setups. As well, the support for “many-endpoint” sound-reproduction will appeal to headsets and hearing-aid applications where there is the desire to send content to many of these devices using a high-quality wireless digital approach rather than RF or induction-loop setups that may be limited in sound quality (in the case of induction-loop setups) or device compatibility (in the case of RF setups). There could even be the ability to support multiple audio-content channels in this setup such as supporting alternative languages or audio description. In some cases, it may open up a use case where transport announcements heard in an airport or rail station can “punch through” over music, video or game sound-effects heard over a Bluetooth headset in a similar way to European car radios can be set up to allow traffic bulletins to override other audio sources.

A question that can be raised with the “many-endpoint” approach that this next-generation Bluetooth-audio technology is to support is whether this can support different connection topologies. This includes “daisy-chaining” speakers so that they are paired to each other for, perhaps a multi-channel setup; using a “hub-and-spoke” approach with multiple headsets or speakers connected to the same source endpoint; or a combination of both topologies including exploiting mesh abilities being introduced to Bluetooth.

Conclusion

From next year, as the newer generations of smartphones, laptops, headsets and other Bluetooth-audio-capable equipment are released, there will be a gradual improvement in the quality and utility of these devices’ audio functions.

A portable adaptor now exists to allow you to use Bluetooth headphones wirelessly with any audio device

Article

AirFly connects your AirPods to anything with a headphone jack | Engadget

Twelve South Debuts New ‘AirFly’ Wireless Transmitter for Using AirPods With In-Flight Entertainment Systems | MacRumors

From the horse’s mouth

TwelveSouth

AirFly Product Page

Use-case video – click or tap to play

My Comments

A reality that can easily surface with Bluetooth headsets like the Apple AirPods range or the JBL E45BT that I just reviewed is that you may want to use them wirelessly with any audio device.

An example of this would include using a Bluetooth noise-cancelling headset like the Plantronics BackBeat Pro with the in-flight entertainment system during your flight but without dealing with headset cables that become tangled with your seat’s lift-up armrest or your seatbelt.

Or you work out at a fitness centre that uses an audio-distribution setup to pass TV sound or a workout-music mix to headphone jacks installed in the treadmills and similar machines so you can hear this sound through a pair of connected headphones. Here, you may want to use the Apple AirPods or your favourite lightweight Bluetooth headset to hear the TV audio or workout-music mix without ruining your headphones due to pulling on the headphone cable during that vigorous workout.

Similarly, you want to watch some late-night TV but don’t want to disturb other people who are sleeping. Here, using Bluetooth headphones with your existing TV equipment may be the dream come true because you could relax as comfortably as possible without worrying about that headphone cable connected between your TV and your headphones.

As well, you may want to use a Walkman device that plays legacy media like cassettes or CDs or a file-based audio player like an iPod to listen to music but maintain the cable-free manner associated with Bluetooth headphones.

Here, Twelve South have introduced the “AirFly” which is a compact Bluetooth audio adaptor that connects to any audio source equipped with the standard 3.5mm stereo headphone jack. This battery-operated device presents itself as a Bluetooth A2DP audio source device to stream the sound from the host device to your Bluetooth headphones.

The AirFly is being pitched as a companion accessory to Apple’s AirPod range of intra-aural Bluetooth headsets and is the same size as the charging case that comes with these headsets. But it can work with any Bluetooth headset or audio adaptor compliant to the Bluetooth A2DP target-device profile. As well, this size is catering to portable applications like travel, gyms and the like.

It uses an integrated rechargeable battery that is expected to run for eight hours and this was proven in the Engadget review when the reviewer used it with a pair of Apple AirPods on an eight-hour transatlantic flight.

The setup process is very simple through the use of push-button pairing. Here, you just have to press the setup button on the AirFly device for 10 seconds to make it discoverable. Then you put the headphones in to “pairing” mode as if to enrol them with a new device. After this procedure is complete, you are ready to connect the AirFly to the device you want to wirelessly hear through your Bluetooth headphones.

The AirFly can also be part of a multipoint setup if your Bluetooth headset supports multipoint operation which most recently-issued headsets do. This will mean that you can still monitor your smartphone for calls through your Bluetooth headphones while you are, for example, watching a TV program and listening to its sound through those same headphones.

A question that may come about with the AirFly Bluetooth audio adaptor is how it will perform with Walkman-type portable radios that rely on the headphone cable as their antenna when you use these radios as an audio source. Here, it may not be able to perform that antenna functionality properly thanks to the short cable that is supplied with it, therefore the Walkman-type radio may not pull in the radio stations properly.

But what is being shown up here is the idea of a highly-portable Bluetooth audio-source adaptor that can stream an audio source through any Bluetooth headset or audio device.

Video peripherals increasingly offering audio-output abilities

Article

XBox One games console press image courtesy Microsoft

Newer iterations of the XBox One to have connectivity for WISA-compliant speakers

Wireless speaker support could be coming to Xbox One consoles | Windows Central

My Comments

An increasing trend for video-peripheral devices like set-top boxes and games consoles is to offer an ability to connect speakers or headphones directly to these devices even though these devices are normally seen as video source devices. This goes against the conventional wisdom of a TV, soundbar and / or home-theatre receiver serving as the audio destination device for a home AV setup.

DLNA media directory provided by server PC

But what of Smart TVs being able to pass audio to these devices?

For example, Humax are offering a Bluetooth A2DP audio output on their premium PVRs so that the soundtrack from whatever you are watching on the PVR’s “current” tuner or hard disk can be fed through a Bluetooth headset or speaker. Just lately, Microsoft partnered up with the WISA Association to provide wireless-speaker output through WISA-compliant speakers from subsequent XBox games-console designs.

Let’s not forget that some soundbars and audio amplifiers are equipped with one HDMI-ARC connection for the TV and don’t add a video source to the home AV setup. The same situation also encompasses a large number of popularly-priced DVD and Blu-Ray home-theatre systems that only have one HDMI-ARC connection for the host TV as the only way to connect video equipment to these systems.

The limitation that is being shown up here is that you can’t stream the soundtrack of video content through the speakers or headphones connected through these devices’ Bluetooth or wireless-speaker outputs unless you are viewing the content hosted by the device itself. Or you may find it difficult to watch what you want yet hear it in the manner that suits the situation such as via headphones or a better speaker setup.

This is very similar to the old practice of connecting a video recorder’s audio output to a hi-fi amplifier to pipe the sound from either a TV broadcast or a videotape through the better-sounding hi-fi speakers.  There were even some video recorders that had their own headphone amplifiers or users simply connected them to hi-fi amplifiers or similar devices with integrated headphone outputs in order to add private or late-night listening abilities to that TV which wasn’t equipped with a headphone output. In that case, you only had access to the video recorder’s tuner or its tape transport through the hi-fi system with the video recorder offering some advantages over what was integrated in that old TV.

It may not be seen as a limitation except if a video peripheral connected to the TV or the TV’s own abilities provide content different to what is available in the “speaker-ability”-equipped video peripheral.

But what can be done to improve upon this reality would be for TV and video-peripheral manufacturers to answer this trend in an improved way.

Use of HDMI-ARC input functionality for host-TV audio

One way would be for the video-peripheral vendors who provide this kind of Bluetooth / WISA or similar “speaker output” ability to implement HDMI-ARC connectivity on their device’s HDMI output socket. It is very similar to the approach used by a popularly-priced DVD or Blu-Ray home-theatre system which only has one HDMI socket,

This means that if the device is connected to the ARC-capable HDMI socket on the TV, it can stream the sound from the TV’s own tuner, “connected-TV” functionality or video peripherals connected to the other HDMI inputs on the TV through this device’s “speaker output”.

Here, you may have to use the device’s controller to select “TV audio” to hear the sound associated with the TV’s sources through the Bluetooth speaker for example. But some TVs that implement this system properly may offer an “audio output” option on the audio menu so you can direct the sound to the audio-capable device by selecting that device rather than the TV’s internal speakers.

The TV to support multiple HDMI-ARC video peripherals

A TV could also implement HDMI-ARC across multiple HDMI sockets to cater for multiple video peripherals that support this functionality. It would come in to its own where different video peripherals use different connection methods for audio devices or you use a soundbar or home theatre setup equipped with a single HDMI connection alongside one of these video peripherals.

Here, you would have the ability to direct the sound to one or more of the HDMI-ARC devices instead of or in addition to the integral speakers.

The first application that one may think of would be to provide late-night private listening using a pair of Bluetooth headphones connected to a cable box, or to switch to WISA-capable speakers connected to a newer XBOX rather than hear the sound through the TV’s speakers. On the other hand, the setup could allow the concurrent operation of multiple audio outputs such as to use a Bluetooth headset connected via a cable box and run at an independent volume level for someone who is hard of hearing while everyone else in the room hears the TV content through the TV’s or home-theatre’s speakers.

In both situations, it would be desirable to hear whatever source is connected to the TV such as a Blu-Ray player or a network media player through the Bluetooth headphones connected via the Bluetooth-capable cable TV box.

How should the digital audio be delivered?

A question that can be raised is how the digital audio is to be delivered to the different HDMI-ARC devices.

This can affect whether to run a stereo or surround soundmix for the content’s soundtrack; whether the soundtrack should be delivered as a Dolby Digital / DTS bitstream that the HDMI-ARC audio device decodes or as a PCM bitstream already decoded by the TV or source video peripheral; or simply whether to stay within the “CD/DAT-quality” digital parameters (16 bit 44.1kHz or 48kHz sampling rate) or allow “master-grade” digital parameters (24 bit 96kHz or 192kHz sampling rate).

This situation may be determined by the destination audio device’s abilities such as whether it can decode Dolby Digital or DTS audio or if it can handle digital audio at “master-grade” bitrates. Similarly, it may also be about achieving a common specification for all of the connected devices, including whether and how to concurrently provide multiple audio streams for the same content such as to offer a two-channel soundmix and a multichannel soundmix.

This can lead to situations like supplying multiple soundmixes of a kind via HDMI-ARC in order to make situations like multilingual audio, audio description or selectable commentary work well for different viewers. Similarly, it could be feasible to offer a “surround via headphones” binaural soundmix like Dolby Headphone to Bluetooth headsets connected to a cable box while offering a full surround soundmix through a multiple-speaker home theatre setup.

Conclusion

What will eventually be raised is what can be achieved at a common baseline specification, including issues of processing power and HDMI bandwidth that the setup can handle. This is especially if a device like a games console or set-top box is working as a content source and audio sink while the TV works as an audio “hub”.

It is more so where we are expecting that flat-screen TV, especially one installed in a secondary lounge area, being required to become an AV hub for all of the video peripherals that are connected to it.

Mixing audio and Bluetooth Low Energy–what is happening

Article

Sony SBH-52 Bluetooth Headphone Audio Adaptor

Audio over Bluetooth Low Energy could make these devices last for a long time on a single battery charge

Apple Used Bluetooth Low Energy Audio for Cochlear Implant iPhone Accessory | MacRumors

My Comments

Any of you who have used Bluetooth headsets with your smartphones may have come across situations where the headset ceases to function or sounds the “low battery” signal when you use these devices a lot. This can happen more so if you are listening to music then make or take a long phone call using the headset and is something I had experienced many times with the Sony SBH-52 audio adaptor. But the audio protocol is being worked on to avoiding consuming too much battery runtime.

Plantronics BackBeat Pro Bluetooth noise-cancelling headphones

.. as it could with Bluetooth headsets

Apple and Cochlear, who are behind the Australian-invented Cochlear Implant hearing-assistance technology, have developed Bluetooth Low Energy Audio to provide a high-quality audio link between mobile devices and headsets but make very little demands on the battery. As well, the Bluetooth Special Interest Group are working on a similar protocol to achieve these same gains, with the goal to have it part of Bluetooth 5.0. But this has to be supported in a vendor-independent manner in the same context as the current Bluetooth audio technologies that are in circulation.

But why is there an imperative to develop a low-energy audio profile for Bluetooth?

One key usage class is to integrate Bluetooth audio functionality in to hearing aids and similar hearing-assistance devices that are expected to run for a very long time. Here, we are also talking about very small intra-aural devices that may sit in or on your ear or be integrated in a set of eyeglasses. The goal is to allow not just for audio access to your smartphone during calls or multimedia activity but even to have an audio pathway from the phone’s microphone to the hearing-assistance device as well as the phone being a control surface for that device.

Similarly, there is a usage goal to improve battery runtime for Bluetooth headsets and audio adaptors such as to avoid the situation I have described above. It can also cater towards improved intra-aural Bluetooth headset designs or lightweight designs that can, again, run for a long time.

Let’s not forget the fact that smartwatches are being given audio abilities, typically to allow for use with a voice-activated personal assistant. But devices of this ilk could be set up to serve full time as a Bluetooth headphone audio adaptor with the full hands-free operation. The expectation here as well could even be to have the display on the wearable active while in use, whether to show the time, steps taken or metadata about the call in progress or whatever you are listening to.

Once audio over Bluetooth Low Energy technology is standardised, it could be a major improvement path for Bluetooth-based audio applications.