Tag: network infrastructure

Cloud routers–the current hot feature for the home network

Increasingly every home-networking equipment vendor is pitching a mid-range or high-end router range that offers “cloud” abilities and features. This kind of feature was simply offered as a remote-access feature but is being marketed under the cloud term, used as a way to make their devices appear to look cool to the customers.

These features are more about simplifying the process of providing authorised users remote access to the control functionality and similar features on these devices and providing this kind of access to someone who is using a smartphone or tablet. It also extends to file access for those of us who connect an external hard disk to these devices to purpose them as network storage.

What benefits does this offer for the home network router

The key feature that is offered for these devices is the ability to allow you to manage them from any Internet connection. This may be about troubleshooting your connection or locking down the Internet connection for rarely-occupied premises like a holiday home or city apartment.

If you connect an external hard disk to your cloud-capable router, you would have the same remote-access functionality as a cloud-capable NAS. This means that you could put and get data while you are on the road using your regular or mobile computing device and an Internet connection.

Some vendors integrate an application-level gateway to their cloud-assisted network services like video surveillance as part of this cloud functionality. This allows you to gain access to these services from the same point of entry as you are provided for your router.

How is this achieved

Like the cloud NAS, this involves the vendor providing a dynamic DNS service to aid in discovery of your router along with the use of SSL and other technologies to create a secure path to your router’s management dashboard.

It is also assisted with a client-side app for the mobile computing platforms so as to provide an integrated operational experience for your smartphone or tablet. This caters for items like access to the notification list, use of the interface style that is distinctive for the platform as well as the ability to get and put files according to what the platform allows.

Vendors who offer other cloud-based services would provide an application-level gateway in the router that ties in with these services and the devices that benefit from them. This is to provide a tight and finished user experience across all of their devices on your network, and is a way to keep you “vendor-loyal”.

Current limitations with this setup and what can be done

As we head towards cloud-capable network devices and add more of these devices to our networks, we will end up with a situation where we have to remember multiple Web addresses and user logins for each of these destinations. The manufacturers like D-Link would exploit this by integrating the cloud functionality for all of their devices or, more likely, devices within certain product ranges so that a user comes in to one entry point to benefit from the cloud functionality for that manufacturer’s device universe.

But the reality is that most of us would create a heterogenous network with devices supplied by different manufacturers and of different product classes. Here, one would have to keep a list of usernames, passwords and Web entry points or install multiple apps on a mobile device to benefit from every device’s cloud functionality.

Similarly, a manufacturer would be interested in evolving their “cloud-side” part of the equation for newer products but could place older products at risk of being shut out. Here, they could maintain the same functionality by keeping the remote access functionality alive and passing stability and security improvements to those of us who maintain the older devices.

Of course, working on systems that are true to industry standards and specifications like TR-069 for remote management can allow for pure interoperability and a future-proof environment. It can also allow for increased flexibility and the ability for third parties to provide the “cloud router” services with their own functionality and branding.

2.4 GHz networking is five feet under with 802.11ac | Wi-Fi Alliance

Article – From the horse’s mouth

Wi-Fi Alliance

2.4 GHz networking is five feet under with 802.11ac | Wi-Fi Alliance

My Comments

The comments raised by the Wi-Fi Alliance about the fact that 2.4GHz-based Wi-Fi networking technology being a nearly-dead technology is something that I find a bit “too quick” at the moment.

One key issue is that there is still a significant number of Wi-Fi client-side and access-point-side devices which only work on the 2.4GHz band using 802.11b/g/n protocols in circulation. This is more so with mobile devices and specific-purpose devices like consumer AV where an upgrade to a 5GHz technology would be costly if not impossible.

In some situations, the 2.4 GHz band with the longer wavelength compared to 5GHz may be at an advantage when it comes to the longer-wavelength bands and frequencies offering better coverage. This may allow for fewer 2.4GHz access points to cover a space.

So if I was to create a upgrade a Wi-Fi segement, I would look towards implementing a simultaneous dual-band setup which works to 802.11n or 802.11ac on the 5GHz band and 802.11n on the 2.4GHz band. As well, I would prefer to buy or specify devices, especially laptops, tablets and smartphones that use dual band Wi-Fi technology.

As for configuring the networks, the 2.4GHz band would be working as 802.11g/n compatibility mode while the 5GHz band would be at 802.11n or 802.11n/ac compatibility mode. This is to assure greatest compatibility with most of the existing devices that are to work with the network.

A router or other network device on the way out could be what is causing flaky network or Internet activity

Article

Yes, Routers Do Die – SmallNetBuilder

My comments

A typical situation that may make you think that the router at the “edge” of your home network is dead is simply no connection to network or Internet resources. The same can also hold true for network connectivity devices like wireless access points, range extenders or HomePlug powerline devices. It is infact the first point of elimination by some people when they are dealing with an Internet connection that has started to play up.

In some cases, you may be dealing with the wall-wart power supply that may have just died out, usually due to a power spike. You may be able to check this out if you have either a multimeter or a spare working power supply with the same voltage and current output that belonged to other equipment to compare with.

On the other hand, erratic Internet or network activity like Wi-Fi clients taking longer than usual to associate with the router’s access point or Internet activity becoming “off again, on again” can indicate equipment that is on the way out. Similarly, the indicator lights on the device could he glowing in a static manner or flashing regularly rather than flickering. As well, you may have had to reset the router too many times either through power-cycling it or pressing the “reset” button.

In the case of network equipment that may serve a particular device, area or network segment, the behaviour may be noticed by network client devices connected to the equipment concerned.

For example, you may have had stellar Wi-Fi network performance in an area of your premises served by a Wi-Fi access point but it’s all gone downhill lately even though you could get good performance out of areas served by other Wi-Fi access points in the same premises. Or you may find things going wrong with the HomePlug AV powerline network segment when it work so smoothly before.

The increased unreliability with this kind of equipment is very similar to that point in a car’s life when it starts living at the mechanic’s workshop and drills a nice big hole in your wallet because of the increased amount of repair work that is needed.

It may crop up more readily with older or poorly-built low-end consumer equipment or in a house or neighbourhood where the mains power supply may be erratic. The erratic power supply can also be brought about due to circuit breakers including earth-leakage circuit breakers (safety switches) frequently tripping or fuses blowing frequently, or simply many whitegoods in operation at the same time.

The key issue to notice is that when a piece of network equipment in the network starts to cause the network connection or Internet service to become increasing unreliable, it could be an indicator to think of newer equipment and budget for better quality equipment.

Product Review-Western Digital MyNet Range Extender

Introduction

I am reviewing the Western Digital MyNet Range Extender which is a surprising take for the new crop of Wi-Fi range extenders. This dual-band range-extender has the Ethernet port so it becomes a client bridge for an existing Wi-Fi segment, but it has the ability to work as an Wi-Fi access point for a wired network segment. This means that it can be set up to extend a wireless network’s coverage once you use it with a HomePlug AV kit or an existing wired Ethernet backbone.

WD MyNet Range Extender

Recommended Retail Price: AUD$149.99

LAN Connectivity

Ethernet 1
Wireless 802.11a/g/n dual-band single-radio WPA2-Personal WPS
– access point, repeater, client-bridge

The device itself

A lot of devices of this class can show their worst side when you are setting them up and integrating them in to your home network. Manufacturers tend to say that they are easy to set up but they can be difficult to set up for reliable operation.

Setup

WD MyNet Range Extender connections - Ethernet and band selector

Connections on rear of the range extender – Ethernet connection, band selector and power

The WD MyNet Range Extender is very much close to plug and play installation if you are using a router or access point that works with the WPS “push-to-setup” method for the wireless network. On the other hand, you have to log in to a special SSID to set the unit up for most networks. Don’t expect this dual-band range extender to work like a radio or TV “translator” station where it can pick up on one band and extend the network to another band, like picking up on the 2.4GHz band and repeating to the 5GHz band – it doesn’t support this functionality.

There is the problem of a worrying error message that mentions that the network connection has failed when you are setting up wirelessly even though it can work. Another problem that also worries me is the use of the same SSID and channel for “extending” the network. This can cause problems that lead to this same error message due to a “beat” frequency being created by the range extender or the risk of a data storm being created. As well, I had to configure the range extender so that its “extended” area is identified separately to the main router so as to identify if it is working properly.

Other than that, the use of a signal meter on the side of the WD MyNet Range Extender allows you to determine how strong the signal is to allow for optimum positioning, whether it serves as a range extender or a client bridge.

The WD Range extender also works well as a client bridge for an Ethernet-ended device even while it works as a range extender, serving one or more wireless devices. This is although the manual says that it is to serve on device but if you use a switch with this device, it could be a different case. It is worth knowing that the bandwidth for the wireless cell created by this device is effectively half of what would be normally available from the router but this is more about assuring reliable operation for your network equipment and it would be installed at the “fringe” of your main access point’s coverage.

The fact that the DC power comes in from the supplied AC adaptor as 12 volts 1.5 amps may also please people who may want to use this device in a vehicle or a boat to “draw out” a caravan park’s or marina’s Wi-Fi coverage or feed it to an Ethernet device without the need of an inverter.

On the other hand, I had a fair bit of trouble getting this unit to work as an access point and found that the review sample wouldn’t even obtain the DHCP address and identify itself on to the network. Following the instructions in the online manual was a futile exercise and I would suggest that WD make the job of setting up as an access point an easy effort. For example, the use of DHCP or Auto-IP be implemented properly on the Ethernet connection in this mode.

Operation

I used the WD MyNet Range Extender as a “fringe coverage” extender for the existing network and found that it was able to work with my phone when it came to streaming Internet radio at the London-based station’s maximum rate.

I also ran it as a client bridge but it also works as the “fringe coverage” extender and it was able to work properly with an old laptop that didn’t come with integrated Wi-Fi wireless.

Limitations and Points Of Improvement

Western Digital could offer a simultaneous dual-band variant of the MyNet Range Extender that could extend both bands of a simultaneous dual-band router or work as a simultaneous dual-band access point.

Similarly they could have this unit be able to work properly as an access point including using DHCP or Auto-IP setup for integrating itself to the Ethernet segment so you can configure it. It could also support an “access-point” setup mode for simplifying the setup of an extended-service-set where one of the access points is equipped with WPS or you run it as a “client bridge” or range extender and it locks on to the wireless network you intend to “extend”. This issue could be sorted out through a firmware update that could apply to equipment that is in current circulation.

As well, there should be a “client WPS” button so you can quickly enroll client devices to the MyNet Range Extender rather than just enrolling the Range Extender to the host router.

Conclusion

Like most wireless range extenders, the WD MyNet Range Extender would require a bit of work in getting them to extend a small wireless network properly. It works well as a client bridge but the access point function does need more work on it. I would recommend it more as a dual-band client-bridge or range extender for someone who has had experience in setting these devices up.

What’s next for the all-in-one printer–now to be a wireless hotspot

Articles

HP’s new all-in-one printer adds more to that ‘all’, turns into a WiFi hotspot

HP printer can act as Wi-Fi hot spot | CNet

My comments

The network-capable multifunction printer has come to a point in the level of functionality that it can offer. Now HP has taken this further by making the Wi-Fi network functionality work as a wireless access point or wireless client in one of their latest SOHO / small-business laser multifunction printers.

Here, the wireless segment created by this printer can serve up to 9 users as well as providing for CD-free driver installation for most operating systems. Of course, like all HP consumer and SOHO / small-business network-enabled printer devices, this printer offers the expected ePrint “email-to-print” ability for smartphone and tablet users and AirPrint for iOS-based Apple mobile devices.

The printer can work as an elementary low-traffic wireless router to a static-IP, dynamic-IP or PPPoE Internet service that comes via an Ethernet cable. It also has home/SOHO WPA2-Personal security with the shared password, which may be of benefit for small businesses who rent office space such as a serviced office and have wired Internet access as part of the deal.

But I would like to see the printer able also to work as an access point for those of you who may work from a garage or barn and share network and Internet facilities with the main house or have to use this feature as an infill access point for a dark spot in the network’s wireless coverage. Similarly, it could benefit from anther Ethernet socket on the back for use with other wired-Ethernet devices like network-attached storage.

Of course, the idea of “ganging” the Ethernet socket and the Wi-Fi circuitry in a network-capable device like a printer that offers Ethernet and Wi-Fi connectivity to make it be network infrastructure has impressed me. It then allows these functions still to be of use even if just one is implemented for connection to a host network.

Feature Article–Wiring a house for Ethernet (Update)

Originally Posted on HomeNetworking01.info: 17 July 2010

Introduction

There may be a question that may come up when you build your new home or do renovations on an existing home. This question is whether to wire you premises for Ethernet or not and how to go about it?

What is involved when you wire for Ethernet

When you wire a house for Ethernet, you are providing a high-speed data backbone for your premises. This is achieved by laying Category 5 or Category 6 wiring from most rooms to a central location where there is a “switch” that moves data around the network at the appropriate speeds for the network devices.

The reason that it makes sense to consider the home-network issue, especially wired-in Ethernet, is because an increasing number of households are using two or more computers. Infact, there is an increasing trend for households to have more computers than TV sets. As well, computers can and have now become entertainment centres for bedrooms and other small areas thanks to optical-disc drives, sound-card setups and radio and TV-tuner kits that install in or connect to PCs. There is also an increasing common practice to copy CDs to the computer’s hard drive so that these computers double as personal jukeboxes, which is an asset with small areas. This means that there is a desire to have access to resources like the Internet and printers from all the computers that are in the house.

Similarly, there is an increasing number of consumer entertainment devices that can connect to the home network, primarily for access to online content or content that is held somewhere on that network. Most of these devices, such as Blu-Ray players and smart TVs, are using Ethernet as a baseline connection method with Wi-Fi, whether integrated or as an add-on module, as an alternative connection method. As well, a games console is now considered “well-bred” if it has a network connectivity option, with the two most-desireable consoles – the Sony PlayStation 3 and the Microsoft XBox 360 – having Ethernet connectivity at least. This means that these consoles can be integrated in online gaming scenarios as well as having access to online or network-hosted entertainment material.

Using “no-new-wires” methods as baseline networks

If you have networked your computer equipment by using a “no-new-wires” method like wireless or HomePlug powerline; you may be dealing with a network that isn’t working at its best. This is because the “no-new-wires” technologies work on having the “no-new-wires” segment’s bandwidth shared by all the devices that connect to the segment. It is exemplified by poor response time during a network multiplayer game hosted across the “no-new-wires” segment or slow transfer speed whenever a file is being transferred between two nodes on the same segment.

Typically, when you implement a “no-new-wires” network, you would use a broadband router that connects to an Ethernet segment and the “no-new-wires” segment on the LAN side, like one of the many wireless Internet gateway devices. Also, if you decide to add on extra network devices that don’t have integrated connectivity for the “no-new-wires” technology, you would have to buy extra network bridges so these devices can work as part of the network.The possibility of high-speed Ethernet being available for home-computer users is made real through high-performance Ethernet network-connectivity devices being made affordable and ubiquitous for most users.

As well, the switches that are required as part of an Ethernet network are now available at very cheap prices. This all ends up with the Category 5 Ethernet medium being considered as a lowest-common-denominator for network connectivity.

Why wire a house for Ethernet?

You will benefit from the high data throughput that Ethernet provides especially now that 1 Gigabit/ second is now becoming the norm for these setups due to affordable Gigabit Ethernet switches. This will benefit applications like Internet gaming, network media streaming such as Internet radio and video-on-demand; as well as graphics-rich printing.

You also gain the advantage of reliable network behaviour because you are not regularly sharing data transports that are prone to interference. This is due to the way the common Ethernet network switches provide dedicated bandwidth to each port on them. They also scale data throughput to the highest speed available between the client and the network switch that the client is connected to. If different clients are moving data at different speeds, the switch implements a buffer so slower clients can benefit from the data while the data is off the faster clients’ minds very quickly.

As you may have known before when you have worked with the computer network at work, or with your Internet experience, the Ethernet infrastructure can carry lots of different data.

This wiring practice will get the best out of the killer applications for these home networks i.e.

  • Internet access from everywhere in the house;
  • PC or console-based network / Internet gaming;
  • Online media derived from Internet services or media that is streamed around the house using DLNA-compliant equipment
  • Voice-over-Internet-Protocol telephony which is either being provided as part of a “triple-play” service or an alternative low-cost telephony service

amongst other activities.

There are infact some situations that may drive you to consider wiring your house for Ethernet, as outlined below.

Next-Generation Broadband Internet Services

A major trend that either is occurring at the moment or will be occurring over the next few years is the rollout of next-generation broadband Internet services. These services are typically based on a fibre-optic backbone with some providing fibre-optic connectivity to the customer’s door, and have a very high headline speed of at least 50Mbps for each customer.

These services will typically provide a “triple play” service with landline telephony, broadband Internet and multi-channel high-definition pay TV as part of the one service, delivered through the one high-speed pipe. You may experience a triple-play service with your broadband Internet service but the next-generation broadband service will provide the extra functionality like many full-HD video streams at once, HD-audio telephony with FM-radio clarity for voice communications, or video telephony that isn’t just confined to Skype or science fiction.

Of course, Ethernet would work well with these services by allowing the full bandwidth of these services to be exploited. This is because the high-speed data communications that the next-generation broadband services provides can be fully attained due to this connection being an “in-home data expressway” for the network. Here, it will benefit large file transfers that will become the norm as media content and computer software is delivered “over the wire” rather than as physical media. This also includes supplementing games with downloadable content such as characters or scenarios that add play value to the game.

This is even though the Wi-Fi wireless or HomePlug powerline technology will still work on shared bandwidth and work as a complementary setup for portable or ad-hoc-positioned devices.

IP-TV / Video-on-demand being part of the“Triple-Play” goal

Sony BDP-S390 Network Blu-Ray Player

Sony BDP-S390 Network Blu-Ray Player – an example of a component that adds DLNA to existing equipment in an affordable manner

This leads me on to talk about Internet-hosted video delivery services that are increasingly becoming the norm for video sources. Here the desire is to view these on the large-screen lounge-room TV and other TV sets in the house; and this application is being considered as a key application, if not the killer application, for the next-generation broadband networks.

This is being facilitated on two different grounds – one being to provide content that is either complementary to or an extension of what is offered by broadcast TV providers and the other is for telecommunications companies and Internet providers to distribute multi-channel pay-TV via the same Internet “pipe” as the telephone service and broadband Internet service.

The first situation, which is highly common in the USA, is to provide “over-the-top” video service where the Internet “pipe” is used by another operator to distribute streamed or downloaded video content independent of the established broadcasters. It manifests in the form of “download-to-view” video-content services like Netflix and Hulu or “complementary cable services” which provide channel groups that may not interest the main cable-TV providers, such as wholesome family entertainment or overseas / expat content in the US. Increasingly, network-enabled video products like games consoles, TVs and BD-Live Blu-Ray players are now using apps or extensions that support broadcaster “catch-up TV”, complementary-TV or video-on-demand platforms.

In this same manner, some users in the USA are looking towards “cutting the cord” – discontinuing their pay-TV subscription with their cable or satellite TV providers in order to save money and / or reduce exposure to the “many channels, nothing on” culture of cable TV there. Here, they are looking towards the “over-the-top” providers for content that would otherwise be on these cable TV services.

The second situation that is currently common in Europe, is “IP-TV”. This is where content from established free-to-air and subscription TV broadcasters is transmitted via an existing IP-based Internet-capable network. This method is being pitched as a way of using DSL or fibre-optic-based next-generation-broadband to distribute Pay-TV signals to subscribers. It has become more common with the ISPs and telcos moving towards offering the “single-pipe triple-play” services with regular telephony, Internet service and multi-channel pay-TV from the same entry point. This setup involves the telco or ISP providing the customer a set-top box (STB) or personal video recorder which plugs in to the router via an Ethernet cable.

As far as this application is concerned, a house that is wired for Ethernet is at an advantage for these “IP-TV” service. It benefits security of the conditional-access system in pay-TV applications because it is harder to unnoticeably “sniff” out conditional-access key values before they reach the set-top box; and there is a high quality-of-service due to the nature of “switched Ethernet” where high bandwidth and low-latency is assured for full-screen video. Also there is the ability to extend the service either through a “portable” setup where the set-top box is relocated at will or through having extra set-top boxes connected to secondary TV sets, this being a feature increasingly offered as a value-added option.

Of course, the Ethernet backbone will provide for improved quality-of-service that is needed for the full enjoyment of streamed and live IP-delivered video content.

Extending or improving the wireless network

Extended wireless-network connection diagram

The multiple-access-point wireless network used to mitigate Wi-Fi reception problems

 

By wiring your house for Ethernet, you are also laying an infrastructure that can definitely work “hand-in-glove” with wireless networking.

This is whether you have your home network based on a wireless backbone provisioned by a wireless router or you are starting from scratch with a wired backbone. If you were on an existing wireless network, you could set up your “fixed” nodes like desktop PCs to work on the Ethernet system.

This then leads to the wireless network being primarily of benefit to those devices that gain the most benefit from it i.e. portable or transportable equipment like laptops, smartphones and tablets.

You are also in a better position to improve your wireless network’s performance by implementing a practice that is performed in corporate, education or public wireless networks. This is to install one or more extra access points in areas where it is not possible to gain optimum reception from your primary wireless access point or wireless router using your existing portable nodes. All these access points are connected to the one wired-Ethernet infrastructure and set to similar network parameters so that the wireless client devices can seamlessly move between these access points depending on which one has the best signal strength. This is illustrated in the diagram above this text and discussed further in my article on improving your wireless network’s coverage.

This situation would mainly affect most pre-1950s brick houses with thick brick walls because such walls can easily attenuate the short-wavelength radio signal that wireless networks use. In some of these houses that have been recently extended, the wall that joins the extension to the main house is often a very thick one because it used to be the outside wall, and therefore becomes the point of attenuation for the short-wavelength wireless-network radio signals. The same situation can affect houses with chimneys that are on interior walls that adjoin rooms. In these houses, especially where there is a fireplace or the remnants thereof in both adjoining rooms, these walls are noticeably thick in order to accommodate the chimney and this situation can lead to poor wireless-network performance. It can also affect buildings that are insulated with foil-reflective insulation or use the new-look corrugated-iron wall as an outside-wall style.

This practice of using two or more access points would also permit optimum coverage of large houses by allowing one to deploy an access point close to each end of the house.

In the same manner, you can use HomePlug AV powerline networking to complement the Ethernet network by catering to those devices that can only use this technology; or as a secondary wired-network setup for ad-hoc use. This is done using a HomePlug-Ethernet bridge and that functionality may be built in to those routers and other devices that support HomePlug, as well as Ethernet and/or wireless as a LAN medium.

The reason this is going to be necessary in the long term because some manufacturers may decide to make network-capable devices that use an “existing-connection” method of providing network connectivity in order to save on design and manufacture costs. This is because they don’t have to add extra sockets on the device’s PCB for Ethernet or write in Ethernet-adaptor support into the device’s firmware. As far as the user or installer is concerned, there is no need to worry about making sure that there is an Ethernet connection accessible to the device or even connect another cable to that device.

Whether you have one computer or many on your premises; or whatever kind of internet service you are using, the improvement brought about by wiring for Ethernet will be seen as enhancing capital value for your premises. This may certainly pay dividends whenever you sell the house or let it out at a later date, because of the concept of pervasive broadband Internet becoming a reality. This brings with it a desire to wire up multiple computers to a network in order to share the high-speed Internet connection.

The Ethernet infrastructure has now existed on the same feature level as an intruder-alarm system as far as most customers are concerned when considering their next home.

The best time to wire for Ethernet

The best time to do this kind of work on an existing house is whenever you are doing works that are involving the house’s electrical system. This would involve rebuilding; refurbishing or extending the building or rewiring the building to comply with modern electrical-safety codes. It is also best done when you are constructing a new building from scratch and I would suggest that you raise this issue with your builder or architect during the planning stages.

This will mean that you may prefer to employ electrical contractors who are competent with telecom and data wiring. These tradesmen will advertise their competence by listing job types like telephones, networks, security and similar work in their advertisements and on their vehicles.

If you have a regular maintenance “sparkie” who does your repairs or other ad-hoc work, he may be able to do this kind of work or know of tradesmen who can do this kind of work on an ad-hoc basis.The reason is that this wiring can be done at the same time as the electrical wiring that is involved in the project.

It comes in to its own if there is “rough-wiring” being done before the walls are plastered or panelled; which is common during building work. Then you just need to have any fitting-off of sockets done when the walls have been covered and decorated.

If the job is essentially a re-wire job, the same electricians who do that job can pull the Ethernet cable through the walls while they lay the new AC wiring. By having the work done at the same time as any other major electrical work, you are in a position to gain maximum value out of your tradesmen who charge by the man-hour.

If you are installing an alarm system or doing similar work where new electrical infrastructure is being laid, you could have the Ethernet wiring laid at this point. This works best if the tradesman that you engage is competent at all facets of infrastructure work and will do this as part of the job.

Working on a budget

If you are on a shoestring budget, you may just focus on wiring the study / home-office and the main living areas in your house such as the family room and the formal living room or rumpus room. In this case, it is also worth making sure that there is an Ethernet connection on each floor of the house and at each end of the house. This is more important for older brick or stone houses that have been extended, so you can set up an extension access point that assures proper wireless coverage past the brick wall that separates the main house and the extension.

Then if you need wired network coverage in the rest of the house, you can use HomePlug AV hardware to cover those areas. But if you do intend to factor in adding extra Ethernet points at a later stage, you may want to make sure you can run that extra wiring through your house.

Planning ideas and issues

Central location

You will need to choose a location for the network switch, which is where all the data that passes the network goes through. It should be out of the way but easily accessible and shouldn’t be too hot.

The places that would come to mind are any built-in storage cupboards like the broom cupboard, the linen press or a built-in wardrobe in one of the bedrooms. You may use a place like the attic or basement. Some of you may want to place the switch in one of the cupboards in the home-office because this would be where the main “Internet-edge” router would be located and you could have the switch co-located with that router.

As I have seen for an alarm-system installation, you may use the wall hidden by the laundry door when it is open as a central location for the network switch. Ideally you shouldn’t use a room which is used for any heat-generating systems like hot water tanks, boilers or furnaces.

Co-locating with your alarm system’s panel

Tight central-location layout for Ethernet network

What to avoid when co-locating the Ethernet switch with an alarm panel or other similar equipment

This same location idea also allows you to establish an installation point for any devices that provide “back-end” functionality for the home like network-attached-storage devices. It then means that you can service all these devices by going to one location.

You may also have to be sure that you have enough space near the system’s central box and room at the power outlet to plug in another “wall-wart” power supply so you can install the Ethernet switch without reliability problems for the network and the alarm system. You could achieve this by using a good-quality power board (power strip) that has many power outlets on it and mount this on the wall, thus plugging your Ethernet switch, alarm system and other devices in to it.

The network switch

WD MyNet 8-port Gigabit Switch

WD MyNet 8-Port Gigabit Switch – an example of an Ethernet switch that works as the hub for your Ethernet network

As for the switch, you should purchase a Gigabit unit with more ports than there are rooms to wire. This allows you to add extra network points at a later date or connect network devices like Ethernet-powerline bridges, wireless access points, network-attached storage or home-automation equipment directly to the switch.

The preference for the Gigabit switches is driven by the fact that most desktop and mainstream laptop computers that have an Ethernet socket have this socket as a Gigabit Ethernet socket. Similarly, it is an expected feature that a well-bred network-attached storage devices on the market have this kind of high-speed connectivity. This also future-proofs the network for 802.11ac “Gigabit Wi-Fi” access points and the next-generation broadband services that are coming on the scene.

It is also worth being aware of and considering switches that work as Power-Over-Ethernet power sources. These units use the Ethernet wiring to provide power to suitably equipped network devices thus eliminating the need to run a power wire to these devices. This feature would be a boon for wireless access points and network CCTV cameras because it removes the need to make sure that there is a power outlet near these devices or risk them being “down” due to accidental power disconnection.

A brand that is still worth looking when you want to purchase Ethernet switches that are value-for-money is NETGEAR. From my personal experience and observations, this company has been known to be the first to offer particularly-desirable functionalities for these devices at reasonable per-port prices with such things as cost-effective five-port and eight-port switches, including some affordable Power-Over-Ethernet power-source models.

Broadband Internet

You will usually have the network-Internet “edge” router, whether it is the typical ADSL modem-router or a broadband router connected to a cable modem or similar broadband-technology device, either in the study, the home office or the main lounge area and will most likely have Ethernet-enabled devices located close to it. Here, you would connect one of the router’s Ethernet ports to the Ethernet installation while having the other sockets available for the other Ethernet-enabled devices like a games console, network-attached storage or network printer.

An increasing number of newer mid-range and high-end routers are coming out with all of the Ethernet ports being Gigabit Ethernet ports rather than the typical 10/100Mbps Ethernet connections offered on this class of device. This will be of benefit when you wire your home for Ethenet and want to have this backbone work at best speeds with the currently-available cost-effective Gigabit Ethernet switches.

Wiring the network

Rooms to wire

When wiring up for Ethernet, it is a good idea to provide a point in each bedroom as well as the kitchen, living room, dining room / family room and the study or home office. This means that you have covered every primary activity area in your home, thus permitting you to install network devices in each of these areas.

You may not think of wiring the living room for Ethernet but this room is where you will end up using networked entertainment equipment. A key example of this are the new “smart TVs”, Blu-Ray players and set-top boxes which have access to online video content or Internet services. They will also be able to draw down media content that his held on hard disks that are available to the home network. <Sony BDP-S390>

If you use an open-plan shared-purpose room like the kitchen / family room or living room / dining room, it may be a good idea to have a network point in each logical “room”. This will avoid the untidy look and safety hazard (to person, machine and irreplaceable items) of running long cords across the floor of these rooms.

Socket fittings

When choosing the socket type for the room sockets, it is best practice to use a standard wall-mount socket for each of these sockets. You may be tempted to use a side-entry socket, which is similar to some TV aerial points that have been commonly used in Australia or the older Telecom Australia telephone connector and these may work out for areas where space may be too tight due to furniture being placed against the wall. The only limitation with using a side-entry socket is that you may experience difficulty plugging and unplugging the device from the socket especially if the cable has the cheaper crimped-on connector.

If the job is aesthetically sensitive, you may be able to find outlet plates that work with the aesthetics of the room where the sockets are installed. This is easy due to the use of standard wall fitting designs that permit manufacturers to supply a large variety of trim-plates or socket modules. This can be of importance to anyone who owns a home that is styled to periods before the beginning of the “neat” 1960s and want to make the fittings reflect that style.

Multiple Points in one room

In some rooms like the kitchen or home office, you will need to be able to have more than one point in that room. This is because you will often end up with multiple devices in that same room.

Extra ports on the main switch

This method involves running extra wires from that room to where the main switch is located and using one of the vacant ports on that main switch. This may allow direct bandwidth being provided to the device that is connected to the port; and can therefore yield better performance for that device. This method also certainly comes in handy when the devices are spread around the room because the room has multiple activity locations such as open-plan living areas.

It would be more fault-tolerant due to the removal of another Ethernet switch that could be a point of failure for the network devices in that room.

Regional switch

This method requires all the network devices to be plugged in to a switch, which is uplinked to the network point that is in that room. This mainly works better for any setups where the devices exist in a cluster; such as a home entertainment centre or a home office / study room.

The only main problem is that if the switch is powered down, those devices lose network connectivity. This can be worsened by the way that “wall-wart” power supplies are often used for powering most switches, routers and other network-infrastructure devices. What this means is that these bulky power supplies can easily fall out of most power boards which have outlets that are spaced wide enough for ordinary plugs rather than these “wall-warts”.

This can be alleviated if there is use of Power Over Ethernet, which uses the same Ethernet cables to run low-voltage DC power to network devices. This avoids the need for power outlets to exist near Ethernet ports for devices like access points. The power is placed into the network via a powered switch or a midspan power injector and devices take the power off the network cables either via their own sockets or through a power splitter which connects to the device’s Ethernet socket and power socket.

The Power-Over-Ethernet setup has been assisted via the use of the IEEE 802.3af standard, which now means interoperability between different device manufacturers. As far as switches are concerned, this could mean that you could have a network-powered 5-port switch with “power forwarding”. This means that the switch can be powered via a network port from a Power Over Ethernet infrastructure rather than a “wall-wart”; and feeds power through at least one of its ports to a network device that is powered over the network.

It can also be alleviated if the switch is powered off its own outlet, which would be the case if it is hidden in a built-in cupboard. This also avoids the temptation for one to unplug the switch in order to run other appliances, which can lead to that part of the network being unexplainably down.

Expandable solution for built-in devices

Expansion Loop - current needs

An expansion loop satisfying current needs

One way to assure expandability for future network needs while saving costs on the current project is to create an “expansion loop” in areas where you may want to install built-in or concealed network devices or extra Ethernet sockets at a later date. One example may be the entertainment centre in the main living area where you may house your network-enabled home entertainment equipment in a cabinet. You may of course have an exposed Ethernet socket for the Internet-enabled HDTV or similar equipment.

By installing two Ethernet sockets in a cupboard such as the pantry, entertainment cabinet or built-in wardrobe, you would achieve this ability to cater for this situation. One of the sockets is wired to a visible point that is in the main area, such as at the breakfast bar. The other is wired to the main Ethernet switch for the home network.

These sockets could be installed in a “three-gang” or “four-gang” faceplate with blanking panels on the unused panels. Then, in the meantime, a straight-through Ethernet patch cable is plugged into both sockets. This then means that you are able to connect any computers or other network devices to this socket that is in the main area.

Expansion Loop - with extra devices or sockets

The expansion loop satisfying future needs at a later date

When the time comes to add a built-in Internet terminal or similar network device, or add extra network sockets in to that area; you or an installer, runs a short run of Ethernet cable from the new device’s or new socket’s location to where the two Ethernet sockets are. Then, a socket is installed at the device’s location and another Ethernet socket is inserted in to the abovementioned multi-gang faceplate and these sockets are connected to the Ethernet cable run. You then use a 5-port switch to connect this device and the existing network socket to the existing network backbone. Here, the switch is uplinked to the main Ethernet switch while the existing Ethernet point and the new device are connected to other ports on the switch.

This solution, which is illustrated in the two images here can also permit other “back-end” network devices such as security and home-automation “hubs” to be installed in this cupboard. As well, other network devices such as network hard drives and Ethernet-“no-new-wires” bridges can he installed in this location. It could even allow one to run extra Ethernet points in this same area at a later date.

Conclusion

Once you consider the idea of wiring for Ethernet, you would certainly have prepared your house for the connected home future. As mentioned before, this act of wiring for Ethernet will be even considered as a capital improvement, which may add value to your house in the Internet age.

You will also avoid the need to think about extra wiring chores should you think of implementing network-based home automation in the future, especially when most “connected-home” equipment will use a standard Ethernet connection on it.

Feature Article–Extending your wireless network’s coverage

This is an update of the article originally published on 11 August 2008 and has been refreshed to encompass newer technologies and equipment features that wireless-network equipment have.

Many of you who have viewed this blog have been looking for information about extending the wireless segment of your home network. Typically it may be to cover a large house or to gain wireless coverage past a radio obstacle like thick brick or stone walls, foil-lined insulation or double-glazing which uses metal-based heat reflection techniques. Previously, I have mentioned about using this technique to mitigate microwave-oven interference on the 2.4GHz band which 802.11g works on.

Most wireless-network equipment manufacturers have released repeater devices that catch the existing wireless-network signal and expose it in to the new area. Some of these setups work on a vendor-specific manner or may work according to standard WDS bridging techniques. But they all require the use of equipment compatible with each other, usually equipment supplied by the same vendor.

Other companies have released “wireless range extenders” which create a new wireless-network segment using a new SSID but bridge it to the existing wireless segment. This can be a point of confusion as you have to determine the best SSID to connect to at your client equipment and you don’t necessarily get the full bandwidth from your home network in this newly-created segment.

The “extended service set”

The method that I am going to talk about here is the establishment of an “extended service set” comprising of multiple access points serving the same network and using the same SSID and security parameters. All the access points have to be connected to a common wired-network backbone which is part of the same logical network; and the access points must be working on the same technology – the same 802.11 variation and operating mode (G-only, N-only, mixed mode, etc).

This method can be performed with access points or wireless routers supplied by different vendors, thus permitting the use of equipment which is suited for the job at hand. It can allow for use of surplus routers simply as access points as long as they are configured correctly.

This setup won’t work properly across networks that are set up as multiple subnets or logical networks. An example of this may include extending a wireless network between two business premises across the street or corridor where they are served by separate Internet services. If you do want to link the two different premises across the street or corridor, you may have to make sure there is a wired or dedicated wireless backbone connecting both these locations before you set up this kind of network.

The diagram below shows what a small network should be like when running an extended service set.

 

Extended wireless-network connection diagram

Connection diagram for the multiple-access-point wireless netwrok

Key Components

The network backbone

The wired-network backbone can work on any wired-network media such as a Cat5 Ethernet, HomePlug power-line, fibre-optic LAN, MoCA TV-aerial coax, HomePNA phone-line or a mix of these technologies bridged to each other. It can even work with a dedicated inter-building wireless backbone that may be used for larger properties or to join shops or offices that are separated by a street.

The network backbone can handle other network traffic from wired-network devices like servers, desktop computers and games consoles; and become the network’s local data path to the Internet. This is while it works as the backbone for the wireless “extended service set”.

You may have be lucky to have an Ethernet cable in your house if you had it “wired for data”. But most houses typically wouldn’t have this facility everywhere. The other technology that I have found to do this job equally well is HomePlug AV powerline networking which works over the cable infrastructure used to provide AC power to your lights and appliances. It can reach further than the existing building, which is a boon if you need to extend coverage to garages, sheds, cabins or other outbuildings or have Internet access in a caravan or campervan used as a “sleepout” or mobile office.

Access Points

These devices are the transmitters that bring the data from the wired network backbone to the wireless client devices and make up the extended service set.

You typically will have one such device in the form of your wireless router which is at your network’s Internet-network “edge”. The wired-network backbone used as part of this “extended service set” would be connected to one of the LAN ports on this device. If you use a wireless router with one Ethernet port for the LAN and that port is used for a desktop computer or similar wired-network device, you will need to expand the number of sockets by using an Ethernet switch. These will typically be a “dime a dozen” for a five-port or eight-port unit. There are also some HomePlug-Ethernet bridges that have a built-in four-port switch that are worth considering if you are setting up a HomePlug backbone.

Repurposing the old wireless router

If you upgraded your wireless router to a newer model, you will still have your existing router gathering dust. Similarly, you may have changed broadband technologies like moving from cable to DSL or from DSL to a next-generation broadband technology and your router’s Internet connection may have been served by a technology-specific internal modem or connection.

This router that became surplus to your needs can work as an access point but will need to be configured appropriately.

Here, you will need to disable the following functions:

  • DHCP server
  • UPnP Internet Gateway Device functionality (typically referred to as UPnP)
  • Dynamic DNS functionality (if used)

As well, you will need to set the LAN IP address to something that is within your network’s IP address range but preferably out of the address pool used by the current router. The reason you have to take care of this setup is because there needs to be only one device performing “network-Internet edge” functions such as DHCP in a network and this device should be the one at the logical network-Internet border.

Some of the newer routers that are sold through retail have an “access point mode” option in their setup Web page. This make the effort of setting them up to run purely as an access point a simpler task because it disables the DHCP, Dynamic DNS and other functions associated with an “edge” router at the click of an option.

When you connect this router to the wired backbone, you use any of the LAN ports to connect the backbone. Never use the WAN port on this router for the wired backbone. This may not be an issue if the router you are setting up is a modem-router where the modem is performing WAN functions or you are using a router that has the above-mentioned “access-point mode” and this mode makes the WAN port become a LAN port.

“3-in-1″ HomePlug wireless access points

There is an increasing number of wireless access points that work with a HomePlug or Ethernet backbone. These devices, such as the Netcomm NP290W / Solwise PL-85PEW and the Devolo dLAN Wireless Extender, are as big as a compact “wall-wart” power adaptor used to power most electronic devices from the mains and plug directly in to the power outlet. They bridge between a Wi-Fi wireless segment (as an access point or wireless client bridge in some cases), a HomePlug powerline segment and a Cat5 Ethernet segment.

These units come in handy if you need to extend a wireless network on a temporary basis or simply if a compact device can do the job better than a large access point. They would come in to their own when you are using the extension access point to mitigate microwave-oven interference in the kitchen or if you want to extend the home network to a static caravan where the teenage kids can use that iPhone or iPad.

But with these devices, you have to make sure that you use one of the wired technologies as the backbone. This means that you have to use them with your HomePlug setgment as the backbone and the Ethernet connection to link a device like a desktop computer, PlayStation 3 or a network printer to the home network; or connect to an existing Ethernet backbone and have the device create a new HomePlug segment as well as working as an access point.

Setting Up The Network

Configuring the access points

You will need to know the SSID and the WEP or WPA wireless security parameters that are operational for your network. These are the only factors that need to be common amongst all of the access points of the network. The reason that the SSID and security parameters are set to the same details is so that wireless client devices can roam between the different access points without any user intervention.

The radio channels for each of the access points have to be set differently to each other. It is a good idea to set the access point closest to the kitchen to Channel 1 if you have a microwave oven in that kitchen. This is because, from my research, most of the domestic-market microwave ovens work at 2450 MHz which is between Channels 8 and 9 on the 802.11g channel list. I had tried an experiment to see whether a microwave can upset a wireless-network “cell” that is tuned away from its operating frequency.

If the access points or wireless routers is a consumer model that was made in the last few years, they would be equipped with WPS push-button setup. Here, you would have to make sure that they don’t reconfigure the wireless access-point parameters when you invoke the WPS push-button setup function. There is usually a “Keep settings” option associated with the WPS setup menu/

This option will then allow you to use the push-button setup on the nearest access point to enroll your wireless client device to your home network.

Dual-band wireless networks

If you are operating a dual-band wireless network which works on 2.4GHz and 5GHz, you may have to create separate extended-service-sets for each band. These would have a different SSID for each band like “Network-Name” for the 2.4G band and “Network-Name-5G: for the 5G band. The security parameters are the same for each band; and you may want to run the 2.4GHz band as “mixed mode” and the 5G band as “N-only”. The advantage of this setup is so you can identify any weak spots that affect a particular band in your dual-band wireless network and is more applicable with the 5GHz band that uses a shorter wavelength than the 2.4GHz band.

Here, you could have the main router that serves most of the house being a dual-band dual-radio type, also known as a simultaneous dual-band unit. This can also apply to an access point expected to cover a large area. Then you could use single-band or dual-band single-radio equipment for providing any infill coverage on either of the bands.

The wireless client devices

There is no need to reconfigure any of the wireless client devices such as laptop computers once you have set up the network according to the above instructions.

You will see an improvement in network performance when you operate your wireless client devices in areas where you barely could operate them. The signal-strength bar-graph that is part of your wireless client device’s network management software will register a stronger signal as the client device comes in to vicinity of the access points.

Some devices may not support this automatic roaming behaviour properly and may require you to reselect the network when you move in to the scope of the better access point.

Conclusion

Once you have followed the steps in this article, you will be able to extend the effective coverage of your wireless home network or make your wireless network cover everywhere in your house even if it uses metal-based energy-efficiency measures or has thick brick or stone walls.

Wi-Fi Alliance starts certifying tunnel technology for better wireless performance – PC World Australia

Articles

Wi-Fi Alliance starts certifying tunnel technology for better wireless performance – WLANs / Wi-Fi, wireless, networking, MediaTek, Marvell Technology Group, Wi-Fi Alliance – PC World Australia

WiFi alliance begins Tunneled Direct Link Setup certification, hopes to improve media streaming | Engadget

My Comments

The Wi-Fi Alliance have released a new certification standard for allowing better wireless performance amongst devices in a wireless-network segment. This standard, known as Tunnelled Direct Link Setup, allows devices that are authenticated with the same access point to transmit data directly to each other.

Allowing direct node-to-node connection after an access point establishes the connection to allow for faster data-transfer performance between clients on a Wi-Fi segment. This would also yield an improved quality-of-service for media streaming or improved latency for real-time gaming.

Not like Wi-Fi Direct where a device that is normally a Wi-Fi client is there to facilitate a network connection. This is more about establishing a direct best-case device-to-device connection rather than a via-access-point connection for a file transfer or media-stream method as a way of improving the data-transfer performance.

When a TDLS link is set up, the devices would form this link at the best abilities available to each other, such as higher speed, quality-of-service, power-saving practices or security compared to what the segment’s access point would offer. Similarly, the access point does not need to be upgraded for this functionality to take place.

The access point would still play its role if the client devices move further afield, thus repeating the data between the client devices. Similarly it would also fulfil network-bridging tasks such as linking to the wired backbone or the Internet service in the case of a Wi-Fi router.

This functionality would be part of newer Wi-Fi-network chipsets that would be deployed in newer computers and similar devices. It would be interesting to see how it works further once more TDLS-enabled devices are in the field.

Wi-fi replacing Ethernet? An expert weighs in on the possibilities

Article

Wi-fi replacing Ethernet? An expert weighs in on the possibilities | SearchNetworking.com

My Comments

After reading the short article by Lisa Pfifer in SearchNetworking.com, it has enforced my line that I have run concerning Wi-Fi vs Ethernet as a primary network technology. She had looked at the issue from the corporate network angle and had found that Wi-Fi hasn’t yet reached the standards of Gigabit Ethernet and that Ethernet suits servers and other applications where there is sessile equipment being expected to provide high-reliability service. She also emphasised that Wi-Fi networking is RADIO and is prone to the same reliability issues that affects radio-based networks.

I have encompassed the HomePlug powerline-based network technology as a no-new-wires wired-network option and support the technology on this site and its use in this way.

For the home network, I would agree, especially in the context of the home entertainment applications. These applications are typically served by equipment that is normally expected to be sessile, like the large television set or its video peripherals; and the best enjoyment of audio or video content is provided if there is smooth continuous playback through the viewing session. Most, if not all, networked home-entertainment equipment would have an Ethernet socket for wired-network connectivity and I would find it more appropriate to use an Ethernet link or HomePlug powerline link to connect this kind of equipment to the home network.

As far as the small business is concerned, I would use Ethernet for normally-sessile applications like point-of-sale terminals, desktop computers and network printers while using Wi-Fi wireless for applications that are intended to be mobile like laptop computers or tablets. Some of you may find HomePlug technology can also serve temporary setups involving fixed computer hardware such as sale-specific supplementary point-of-sale terminals.

Of course, the building that the network is used in often determines the reliability and quality of a Wi-Fi wireless network. Examples of this include thick brick or stone walls, reinforced concrete and use of reflective-foil insulation and double-glazing.

It is definitely an example of a different reality to what the industry, especially the consumer computing and electronics industry wants us to believe, where Wi-Fi wireless technology is the “way to go” for networking.

Wi-Fi wireless networks are to complement wired network technology!

IEEE P1905–A standard to make the heterogenous small network easy to manage

Articles

HomePlug® Powerline Alliance Announces Support for IEEE P1905 Convergent Digital Home Network Standard – HomePlug Powerline Alliance

IEEE P1905 Standard page

My Comments

Realities

More home networks implementing two or more media backbones

As the typical home network evolves, there will be a time when another interface type will be implemented in that network.

There are two examples of this common situation. One is where a person who has run an Ethernet network from the network-Internet edge to their computer decides to “go wireless” with their laptop computers and upgrades to a wireless router yet maintains the Ethernet connection for desktop computers. Another example that is increasingly common in Europe and will become so with the prevalence of IP-delivered TV would be a household that has a Wi-Fi network for the laptop but implements a HomePlug powerline network to serve the set-top box or IP-enabled TV in the lounge.

Infact I have advocated these kinds of network setups in this site in order to encourage a flexible home or small-business network that suits all situations that are thrown at it. This includes handling radio-difficult environments like double-brick walls or foil-lined insulation that can exist in many houses.

Network endpoint devices with multiple network interfaces

An increasing number of network-endpoint devices like computers, printers and Internet media devices are being required to support multiple types of network interfaces. This may be provided out of the box; or the user may have to install a hardware network adaptor for a particular network interface in to the device even though the device has an integrated network adaptor for another interface.

A very common example that I have seen for myself is laptop users switching between a wired Ethernet connection and a Wi-Fi wireless connection. Typically the laptop user who is getting used to the “New Computing Environment” and what it offers will plug their computer into the router’s Ethernet socket while they work at their desk; then disconnect from the Ethernet socket and “go wireless” when they want to use the laptop in other parts of the house. This typically can cause problems due to network storms or switchover problems; and often requires the user to disable or enable Wi-Fi on the laptop as they change connections.

Similarly, most of the network-enabled multifunction printers that I have reviewed at HomeNetworking01.info are equipped with an Ethernet socket as well as an integrated WPA2-secured Wi-Fi interface. This is becoming very common with most network-enabled media players, especially “smart TVs” and BD-Live Blu-Ray players.

Setup and management difficulties with these networks

These networks can yield their fair share of difficulties as users have to set up each network segment or device for secure reliable operation. This can include initial provisioning needs that a media type has like SSID and WPA-PSK security keys for Wi-Fi segments to management of segment-specific problems like Wi-Fi reception issues.

It will become more difficult as advanced networking requirements such as quality-of-service, synchronous media streaming, multiple logical networks and robust security are required out of these small heterogenous networks.

In the case of the devices, it will include making sure that the device works with the best network interface available even if both interfaces are physically connected. The most common example of this is making sure that the Wi-Fi-enabled laptop or printer works on a wired link if connected to the network via that link and works with the Wi-Fi link in other cases without the need for a manual switchover procedure.

What is this new standard intending to provide

You may think that there are standards out there to help with managing a computer network but most of these standards work to a particular network media type. As well, a lot of them require management by an IT team, something which few households or small businesses can have on hand all the time.

One major benefit is simplified media-level control across different media types on the same network. This isn’t achieved through the use of higher-level configuration routines managed by IP or application-level protocols like SNMP or UPnP, but these protocols can be adapted for this standard.

There will also be a focus on end-to-end performance such as allowing a device to choose the network interface that provides best throughput and quality-of-service. It can also allow “end-to-end” quality-of-service to be achieved from the network-Internet “edge” to the end device for IP telephony, multimedia streaming or Internet gaming.

Similarly, there is the ability to manage the media-level network security and energy-management needs that are required for the network in an easier form. This includes coordinating device wakeup across different media types so that a device can exist in an energy-saving quiescent mode yet “come to” when someone else on the network need it no matter how it is connected.

This standard recognises the reality that no one network type suits all needs, different horses for different courses.

Here, a typical setup may use Cat5 Ethernet as a high-speed backbone between floors or across the house, a HomePlug AV segment as a high-reliability wired “no-new-wires” setup for temporary applications and a Wi-Fi wireless segment that is primarily for portable devices.

The main focus that will be achieved is that bridge or switch devices that work across the multiple media types can perform these jobs more efficiently without needing to use higher-level protocols to achieve this goal; and be assured that the requirements for the network data are met as the data travels these devices.

Unanswered questions

Support for and management of VLAN networks

An unanswered question about this standard is whether it can support a VLAN network. This is a network that hosts multiple logical networks across the same physical infrastructure. It would be relevant in the small network space for “guest / hotspot networks” and IPTV setups where end-to-end content protection is required.

Features that may be considered of importance in this regard include replicating VLAN setups across the network as infrastructure devices are added to the network. An example of this could b to use an extension access point to “build out” a Wi-Fi network yet maintain the “guest network” and the “private network” as separate entities with separate SSIDs.

It also includes multi-tenancy-building environments where there is common “LAN” network infrastructure like cable runs that exist to interlink units (apartments, shops, offices, etc) or multi-SSID access points installed to service common areas (common gardens, swimming pools, food courts, etc). Here, it would be required to establish a VLAN interlink between two or more premises under the control of the same entity or establish a link to a common multi-SSID access point with the same SSID and security parameters as your main access point.

Wi-Fi devices and their operating mode

Another questiom that may affect the management of Wi-Fi devices is what kind of operating mode the device should be in. This is whether it is a client device or an access point; or to implement “direct link” or WDS or newer-standard network repeater functionality.

This would cater for an increasing number of “multi-function” access points which was a trend brought about by newer firmware versions for the Linksys WAP54G wireless access point. Here, the access point could be set up to be on the end of a direct wireless link, or be a client bridge for an existing Wi-Fi segment, a Wi-Fi repeater as well as being an access point.

This standard could provide support for a wireless endpoint such as a "multi-function” access point or the Wi-Fi functionality in a printer or other device to work as a client device or as an access point. It could then allow for these devices to quickly serve as infill access points when they are connected to a wired backbone after working on the Wi-Fi network.

Conclusion

At least the IEEE P1905 standard will make some effort towards making the establishment, management and development of the typical heterogenous small network become an easier talsk that is less painful.